Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation
-
* Corresponding authors.
E-mail addresses: ganglu@sdu.edu.cn (G. Lu), yfliang@sdu.edu.cn (Y.-F. Liang)
Citation:
Tian-Zhang Wang, Le-Yu Tang, Yu-Qiu Guan, Lingfei Hu, Gang Lu, Yu-Feng Liang. Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation[J]. Chinese Chemical Letters,
;2025, 36(11): 111050.
doi:
10.1016/j.cclet.2025.111050
F. Chen, T. Wang, N. Jiao, Chem. Rev. 114 (2014) 8613–8661.
doi: 10.1021/cr400628s
F. Song, B. Wang, Z.J. Shi, Acc. Chem. Res. 56 (2023) 2867–2886.
doi: 10.1021/acs.accounts.3c00230
J. Xie, H. Jin, A.S.K. Hashmi, Chem. Soc. Rev. 46 (2017) 5193–5203.
doi: 10.1039/C7CS00339K
H. Yang, Z. Zhou, C. Tang, F. Chen, Chin. Chem. Lett. 35 (2024) 109257.
doi: 10.1016/j.cclet.2023.109257
B. Eftekhari-Sis, M. Zirak, Chem. Rev. 115 (2015) 151–264.
doi: 10.1021/cr5004216
F. Song, B. Wang, Z. J Shi, Acc. Chem. Res. 56 (2023) 2867–2886.
doi: 10.1021/acs.accounts.3c00230
M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 107 (2007) 3117–3179.
doi: 10.1021/cr050988l
B. Yuan, D. Ding, C. Wang, ACS Catal. 12 (2022) 4261–4267.
doi: 10.1021/acscatal.2c00677
R. Vicente, Chem. Rev. 121 (2021) 162–226.
doi: 10.1021/acs.chemrev.0c00151
Y. Xue, G. Dong, Acc. Chem. Res. 55 (2022) 2341–2354.
doi: 10.1021/acs.accounts.2c00400
D.S. Kim, W.J. Park, C.H. Jun, Chem. Rev. 117 (2017) 8977–9015.
doi: 10.1021/acs.chemrev.6b00554
Y.F. Liang, N. Jiao, Acc. Chem. Res. 50 (2017) 1640–1653.
doi: 10.1021/acs.accounts.7b00108
H. Wang, I. Choi, T. Rogge, N. Kaplaneris, L. Ackermann, Nat. Catal. 1 (2018) 993–1001.
doi: 10.1038/s41929-018-0187-1
X. Cheng, A. Lei, T.S. Mei, et al., CCS Chem. 4 (2022) 1120–1152.
doi: 10.31635/ccschem.021.202101451
S.H. Shi, Y. Liang, N. Jiao, Chem. Rev. 121 (2021) 485–505.
doi: 10.1021/acs.chemrev.0c00335
H. Lu, T.Y. Yu, P.F. Xu, H. Wei, Chem. Rev. 121 (2021) 365–411.
doi: 10.1021/acs.chemrev.0c00153
Y.F. Liang, M. Bilal, L.Y. Tang, et al., Chem. Rev. 123 (2023) 12313–12370.
doi: 10.1021/acs.chemrev.3c00219
W. Shang, R. Shi, D. Niu, Chin. J. Chem. 41 (2023) 2217–2236.
doi: 10.1002/cjoc.202300153
N.R. Candeias, R. Paterna, P.M.P. Gois, Chem. Rev. 116 (2016) 2937–2981.
doi: 10.1021/acs.chemrev.5b00381
J. Zhou, G. Xu, Y. Ni, ACS Catal. 10 (2020) 10954–10966.
doi: 10.1021/acscatal.0c02646
Y. Xu, X. Qi, P. Zheng, et al., Nature 567 (2019) 373–378.
doi: 10.1038/s41586-019-0926-8
J. Cao, H. Wu, Q. Wang, J. Zhu, Nat. Chem. 13 (2021) 671–676.
doi: 10.1038/s41557-021-00698-y
F. Song, T. Gou, B.Q. Wang, Z.J. Shi, Chem. Soc. Rev. 47 (2018) 7078–7115.
doi: 10.1039/c8cs00253c
Z.Q. Lei, H. Li, Y. Li, et al., Angew. Chem. Int. Ed. 51 (2012) 2690–2694.
doi: 10.1002/anie.201107136
Z.Q. Lei, F. Pan, H. Li, et al., J. Am. Chem. Soc. 137 (2015) 5012–5020.
doi: 10.1021/ja512003d
A. Dermenci, R.E. Whittaker, G. Dong, Org. Lett. 15 (2013) 2242–2245.
doi: 10.1021/ol400815y
A. Dermenci, R.E. Whittaker, Y. Gao, et al., Chem. Sci. 6 (2015) 3201–3210.
doi: 10.1039/C5SC00584A
R. Somerville, R. Martin, Angew. Chem. Int. Ed. 56 (2017) 6708–6710.
doi: 10.1002/anie.201702188
T. Morioka, A. Nishizawa, T. Furukawa, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 139 (2017) 1416–1419.
doi: 10.1021/jacs.6b12293
T.T. Zhao, W.H. Xu, Z.J. Zheng, P.F. Xu, H. Wei, J. Am. Chem. Soc. 140 (2018) 586–589.
doi: 10.1021/jacs.7b11591
J.H. Guo, Y. Liu, X.C. Lin, et al., Angew. Chem. Int. Ed. 60 (2021) 19079–19084.
doi: 10.1002/anie.202106709
M.E. O'Reilly, S. Dutta, A.S. Veige, Chem. Rev. 116 (2016) 8105–8145.
doi: 10.1021/acs.chemrev.6b00054
M.D.R. Lutz, D. Morandi, Chem. Rev. 121 (2021) 300–326.
doi: 10.1021/acs.chemrev.0c00154
A.A. Tabolin, S.L. Ioffe, Chem. Rev. 114 (2014) 5426–5476.
doi: 10.1021/cr400196x
H. Huang, X. Ji, W. Wu, H. Jiang, Chem. Soc. Rev. 44 (2015) 1155–1171.
doi: 10.1039/C4CS00288A
D.D. Dong, J.C. Song, S.H. Yang, et al., Chin. Chem. Lett. 33 (2022) 1199–1206.
doi: 10.1016/j.cclet.2021.08.067
B. Zhao, Z. Shi, Angew. Chem. Int. Ed. 56 (2017) 12727–12731.
doi: 10.1002/anie.201707181
D. Ding, C. Wang, ACS Catal. 8 (2018) 11324–11329.
doi: 10.1021/acscatal.8b03930
W. Ai, Y. Liu, Q. Wang, Z. Lu, Q. Liu, Org. Lett. 20 (2018) 409–412.
doi: 10.1021/acs.orglett.7b03707
S. Cui, X. Wu, W. Ma, et al., Green Syn. Cataly. 2 (2021) 307–310.
Z. Li, R.O. Torres-Ochoa, Q. Wang, J. Zhu, Nat. Commun. 11 (2020) 403–409.
doi: 10.1038/s41467-020-14292-2
P.Z. Wang, Y. Gao, J. Chen, et al., Nat. Commun. 12 (2021) 1815–1825.
doi: 10.1038/s41467-021-22127-x
C.H. Jun, H. Lee, S.G. Lim, J. Am. Chem. Soc. 123 (2001) 751–752.
doi: 10.1021/ja0033537
Y. Xia, G. Lu, P. Liu, G. Dong, Nature 539 (2016) 546–550.
doi: 10.1038/nature19849
R. Zhang, T. Yu, G. Dong, Science 382 (2023) 951–957.
doi: 10.1126/science.adk1001
H. Li, B. Ma, Q.S. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 14388–14393.
doi: 10.1002/anie.202006740
H. Li, M.L. Wang, Y.W. Liu, et al., ACS Catal. 12 (2022) 82–88.
doi: 10.1021/acscatal.1c04010
Z.Y. Wang, X. Zhang, W.Q. Chen, et al., Angew. Chem. Int. Ed. 63 (2024) e202319773.
doi: 10.1002/anie.202319773
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Liu, Y. Ye, J.L. Sessler, H. Gong, Acc. Chem. Res. 53 (2020) 1833–1845.
doi: 10.1021/acs.accounts.0c00291
X. Pang, P.F. Su, X.Z. Shu, Acc. Chem. Res. 55 (2022) 2491–2509.
doi: 10.1021/acs.accounts.2c00381
Q. Pan, Y. Ping, W. Kong, Acc. Chem. Res. 56 (2023) 515–535.
doi: 10.1021/acs.accounts.2c00771
G. Li, T. Wang, F. Fei, et al., Angew. Chem. Int. Ed. 55 (2016) 3491–3495.
doi: 10.1002/anie.201511321
Z. Li, K.F. Wang, X. Zhao, et al., Nat. Commun. 11 (2020) 5036–5047.
doi: 10.1038/s41467-020-18834-6
Y. Dai, F. Wang, S. Zhu, L. Chu, Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
Q.Q. Pan, L. Qi, X. Pang, X.Z. Shu, Angew. Chem. Int. Ed. 62 (2023) e202215703.
doi: 10.1002/anie.202215703
L. Xi, L. Du, Z. Shi, Chin. Chem. Lett. 33 (2022) 4287–4292.
doi: 10.1016/j.cclet.2022.01.077
Y.Z. Li, N. Rao, L. An, et al., Nat. Commun. 13 (2022) 5539.
doi: 10.1038/s41467-022-33159-2
Q. Lin, G. Ma, H. Gong, ACS Catal. 11 (2021) 14102–14109.
doi: 10.1021/acscatal.1c04239
L. Qi, X. Pang, K. Yin, et al., Chin. Chem. Lett. 33 (2022) 5061–5064.
doi: 10.1016/j.cclet.2022.03.070
Y. Li, Y. Li, H. Shi, et al., Science 376 (2022) 749–753.
doi: 10.1126/science.abn9124
Y. Gong, L. Su, Z. Zhu, Y. Ye, H. Gong, Angew. Chem. Int. Ed. 61 (2022) e202201662.
doi: 10.1002/anie.202201662
X. Wu, A. Turlik, B. Luan, et al., Angew. Chem. Int. Ed. 61 (2022) e202207536.
doi: 10.1002/anie.202207536
J. Lu, Y. Yao, L. Li, N. Fu, J. Am. Chem. Soc. 145 (2023) 26774–26782.
doi: 10.1021/jacs.3c08839
W. Du, Q. Luo, Z. Wei, et al., Sci. China Chem. 66 (2023) 2785–2790.
doi: 10.1007/s11426-023-1791-3
Y. Wang, Y. Ping, W. Kong, Chin. Chem. Lett. 34 (2023) 108453.
doi: 10.1016/j.cclet.2023.108453
Q.Q. Pan, L. Qi, X. Pang, X.Z. Shu, Angew. Chem. Int. Ed. 62 (2023) e202215703.
doi: 10.1002/anie.202215703
X. Ying, Y. Li, L. Li, C. Li, Angew. Chem. Int. Ed. 62 (2023) e202304177.
doi: 10.1002/anie.202304177
J. Yang, Z. Gui, Y. He, S. Zhu, Angew. Chem. Int. Ed. 62 (2023) e202304713.
doi: 10.1002/anie.202304713
L. Cheng, J. Liu, Y. Chen, H. Gong, Nat. Synth. 2 (2023) 364–372.
doi: 10.1038/s44160-023-00239-0
Y.C. Luo, M.K. Wang, L.C. Yu, X. Zhang, Angew. Chem. Int. Ed. 62 (2023) e202308690.
doi: 10.1002/anie.202308690
L. Wan, Y. Tong, X. Lu, Y. Fu, Chin. Chem. Lett. 35 (2024) 109283.
doi: 10.1016/j.cclet.2023.109283
Q. Pan, K. Wang, W. Xu, et al., J. Am. Chem. Soc. 146 (2024) 15453–15463.
doi: 10.1021/jacs.4c03745
Y.P. Shao, Z.M. Chi, Y.M. Liang, Sci. China Chem. 67 (2024) 1935–1940.
doi: 10.1007/s11426-024-1949-1
P. Li, Z. Zhu, C. Guo, et al., Nat. Catal. 7 (2024) 412–421.
doi: 10.1038/s41929-024-01118-3
S.C. Wang, L. Liu, M. Duan, et al., J. Am. Chem. Soc. 146 (2024) 30626–30636.
doi: 10.1021/jacs.4c12324
D. Zeng, Z. Liu, G. Huang, Y. Wang, S. Zhu, Nat. Commun. 15 (2024) 7645.
doi: 10.1038/s41467-024-52054-6
D. Sun, Y. Gong, Y. Wu, Y. Chen, H. Gong, Adv. Sci. 11 (2024) 2404301.
doi: 10.1002/advs.202404301
F.F. Tong, Y.C. Luo, H.Y. Zhao, X.P. Fu, X. Zhang, Angew. Chem. Int. Ed. 63 (2024) e202417858.
J. Zhou, Y. He, Z. Liu, Y. Wang, S. Zhu, Adv. Sci. 11 (2024) 2306447.
doi: 10.1002/advs.202306447
X.W. Chen, C. Li, Y.Y. Gui, et al., Angew. Chem. Int. Ed. 63 (2024) e202403401.
doi: 10.1002/anie.202403401
S. Lu, Z. Hu, D. Wang, T. XU, Angew. Chem. Int. Ed. 63 (2024) e202406064.
doi: 10.1002/anie.202406064
L. Ding, M. Wang, Y. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202413557.
G.Y. Han, P.F. Su, Q.Q. Pan, X.Y. Liu, X.Z. Shu, Nat. Catal. 7 (2024) 12–20.
T.Z. Wang, Y.Q. Guan, T.Y. Zhang, Y.F. Liang. Adv. Sci. 11 (2024) 2306923.
doi: 10.1002/advs.202306923
J.W. Wang, Q.W. Zhu, D. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202413074.
doi: 10.1002/anie.202413074
X.B. Liu, R.M. Liu, X.D. Bao, H.J. Xu, Y.F. Liang, Chin. Chem. Lett. 35 (2024) 109783.
doi: 10.1016/j.cclet.2024.109783
X. Zhang, W. Su, H. Guo, et al., Angew. Chem. Int. Ed. 63 (2024) e202318613.
doi: 10.1002/anie.202318613
X. Luo, W. Mao, C.F. Liu, et al., Nat. Synth. 3 (2024) 633–642.
doi: 10.1038/s44160-024-00492-x
S. Xu, Y. Ping, M. Xu, et al., Nat. Chem. 16(2024) 2054–2065.
doi: 10.1038/s41557-024-01629-3
C. Yoo, S. Bhattacharya, X. Yi, et al., Science 382 (2023) 815–820.
doi: 10.1126/science.ade3179
X. Wang, G. Ma, Y. Peng, et al., J. Am. Chem. Soc. 140 (2018) 14490–14497.
doi: 10.1021/jacs.8b09473
L. Huang, L.K.G. Ackerman, K. Kang, A.M. Parsons, D.J. Weix, J. Am. Chem. Soc. 141 (2019) 10978–10983.
doi: 10.1021/jacs.9b05461
L.E. Ehehalt, O.M. Beleh, I.C. Priest, et al., Chem. Rev. 124 (2024) 13397–13569.
doi: 10.1021/acs.chemrev.4c00524
S.H. Newman-Stonebraker, T.J. Raab, H. Roshandel, A.G. Doyle, J. Am. Chem. Soc. 145 (2023) 19368–19377.
doi: 10.1021/jacs.3c06233
X. Mo, T.D.R. Morgan, H.T. Ang, D.G. Hall, J. Am. Chem. Soc. 140 (2018) 5264–5271.
doi: 10.1021/jacs.8b01618
R. Lavernhe, R.O. Torres-Ochoa, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 60 (2021) 24028–24033.
doi: 10.1002/anie.202110901
Y.M. Cai, X.T. Liu, L.L. Xu, M. Shang, Angew. Chem. Int. Ed. 63 (2024) e202315222.
doi: 10.1002/anie.202315222
C.X. Liu, P.P. Xie, F. Zhao, et al., J. Am. Chem. Soc. 145 (2023) 4765–4773.
doi: 10.1021/jacs.2c13542
B.E. Nadeau, D.D. Beattie, E.K.J. Lui, et al., Organometallics 42 (2023) 2326–2334.
doi: 10.1021/acs.organomet.3c00199
X. Ren, Y. Lu, G. Lu, Z.X. Wang, Org. Lett. 22 (2020) 2454–2459.
doi: 10.1021/acs.orglett.0c00674
Y.Q. Zhang, L. Hu, L. Yuwen, G. Lu, Q.W. Zhang, Nat. Catal. 6 (2023) 487–494.
doi: 10.1038/s41929-023-00966-9
Xinghao Cai , Chen Ma , Ying Kang , Yuqiang Ren , Xue Meng , Wei Lu , Shiming Fan , Shouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Jialin Huang , Liying Fu , Zhanyong Tang , Xiaoqiang Ma , Xingda Zhao , Depeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Huiyuan Deng , Na Zhao , Junjie You , Zhicheng Pan , Bo Xing , Yuling Ye , Bo Lai , Yuxi Wang , Tongrui Lu , Xiaonan Liu . Removal of bisphenol a through peroxymonosulfate activation with N-doped graphite carbon spheres coated cobalt nanoparticles catalyst: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(8): 110650-. doi: 10.1016/j.cclet.2024.110650
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Zhili Yang , Liqun Liu , Xuebi Rao , Zeyu Jin , Jialin Sun , Yongkang Zhu , Shiming Zhang . Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis. Chinese Chemical Letters, 2025, 36(11): 111440-. doi: 10.1016/j.cclet.2025.111440
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836