Citation: Hui Bian, Xinyi Yuan, Nan Zhang, Zhuo Xu, Juhong Lian, Ruibin Jiang, Junqing Yan, Deng Li, Shengzhong (Frank) Liu. Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst[J]. Chinese Chemical Letters, ;2025, 36(7): 111034. doi: 10.1016/j.cclet.2025.111034 shu

Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst

Figures(4)

  • Constructing vacancy-decorated metal halide perovskites (MHPs) have emerged as promising pathway to enhance photocatalytic activity and selectivity for solar CO2 reduction. However, the controllable construction of vacancy defects is still challenging, and our understanding of the roles of these defects, particularly their effects on the adsorption activation of surface reaction molecules, is still insufficient. Herein, we elaborately designed and synthesized adjustable Br vacancies in CsPbBr3 catalysts by manipulating the dissolution and recrystallization speed of precursors during the ball milling process using solvents with gradient polarities. We found that the Br vacancies could promote the charge separation, while having slight influence on the band structure of CsPbBr3. More importantly, temperature-programmed desorption results combined with theoretical calculations revealed that Br vacancies can significantly enhance the adsorption of CO2 and CO on the surface, specifically increasing the adsorption strength between CO and the active sites. This finding provides a substantial opportunity for achieving high activity and selectivity in photocatalytic CO2 methanation. Accordingly, a high rate of CO2 photoreduction to CH4 up to 17.94 ± 0.81 µmol g-1 h-1 along with superior selectivity of 95.8% were acquired for CsPbBr3HX featuring with the richest Br vacancy defects, which is 18.9-fold compared that of CsPbBr3CAN with the lowest Br vacancy defects. This investigation deepens insights into action mechanism of defects on halide perovskites catalysts, offering a novel strategy for the high-effective conversion of CO2 into valuable products.
  • 加载中
    1. [1]

      Z. Jiang, X. Xu, Y. Ma, et al., Nature 586 (2020) 549–554.  doi: 10.1038/s41586-020-2738-2

    2. [2]

      X. Jiang, J. Huang, Z. Bi, et al., Adv. Mater. 34 (2022) 2109330.

    3. [3]

      Y. Li, Y. Lei, H. Wang, et al., Nano-Micro Lett. 15 (2023) 128.

    4. [4]

      Z. Dai, N.P. Padture, Nat. Energy 8 (2023) 1319–1327.  doi: 10.1038/s41560-023-01378-6

    5. [5]

      Y. Zou, S. Li, D. Zheng, et al., Sci. China Chem. 67 (2024) 2215–2223.  doi: 10.1007/s11426-024-2076-3

    6. [6]

      Y. Jiang, J.F. Liao, H.Y. Chen, et al., Chem 6 (2020) 766–780.

    7. [7]

      Y. Wang, H. Huang, Z. Zhang, et al., Appl. Catal. B 282 (2021) 119570.

    8. [8]

      H. Arandiyan, S.S. Mofarah, C.C. Sorrell, et al., Chem. Soc. Rev. 50 (2021) 10116–10211.  doi: 10.1039/d0cs00639d

    9. [9]

      G. Li, Z. Su, L. Canil, et al., Science 379 (2023) 399–403.

    10. [10]

      J. Liu, Z. Liu, J. Ren, et al., Adv. Funct. Mater. 35 (2025) 2420239.  doi: 10.1002/adfm.202420239

    11. [11]

      C. Wang, Z. Xie, Y. Wang, et al., Adv. Sci. 11 (2024) 2402471.

    12. [12]

      Y. Wang, H. Fan, X. Liu, et al., J. Alloys Compd. 945 (2023) 169197.

    13. [13]

      J. Wu, X. Li, W. Shi, et al., Angew. Chem. Int. Ed. 57 (2018) 8719–8723.  doi: 10.1002/anie.201803514

    14. [14]

      J. Liu, S. Zhang, D. Qu, et al., Nano-Micro Lett. 17 (2024) 24.

    15. [15]

      X. Wang, K. Li, J. He, et al., Nano Energy 78 (2020)105388.

    16. [16]

      Y. Dong, K. Li, W. Luo, et al., Angew. Chem. Int. Ed. 59 (2020) 12931–12937.  doi: 10.1002/anie.202002939

    17. [17]

      Z. He, Q. Tang, X. Liu, et al., Energy Fuels 35 (2021) 15005–15009.  doi: 10.1021/acs.energyfuels.1c01482

    18. [18]

      J. Pi, X. Jia, Z. Long, et al., Adv. Energy Mater. 12 (2022) 2202074.

    19. [19]

      Y. Jiang, J.F. Liao, H.Y. Chen, et al., Chem 6 (2020) 766–780.

    20. [20]

      J. San Martin, N. Dang, E. Raulerson, et al., Angew. Chem. Int. Ed. 61 (2022) e202205572.

    21. [21]

      Q. Wang, G. Zhang, W. Xing, et al., Angew. Chem. Int. Ed. 62 (2023) e202307930.

    22. [22]

      J. Liu, H. Liang, B. Wei, et al., Small Struct. 4 (2023) 2200379.

    23. [23]

      J.N. Yang, Y. Song, J.S. Yao, et al., J. Am. Chem. Soc. 142 (2020) 2956–2967.  doi: 10.1021/jacs.9b11719

    24. [24]

      M. Li, Y. Zhao, J. Guo, et al., Nano-Micro Lett. 15 (2023) 119.  doi: 10.32014/2023.2518-170x.304

    25. [25]

      L. Song, Q. Zhang, S. Ullah, et al., J. Mater. Chem. C 11 (2023) 4526–4535.  doi: 10.1039/d3tc00406f

    26. [26]

      Y. Wang, Q. Zhou, Y. Zhu, et al., Appl. Catal. B 294 (2021) 120236.

    27. [27]

      Y. Li, C. Wang, M. Song, et al., Appl. Catal. B 243 (2019) 760–770.

    28. [28]

      L. Wang, B. Zhu, J. Zhang, et al., Matter 5 (2022) 4187–4211.

    29. [29]

      B.N. Choi, J.Y. Seo, Z. An, et al., Chem. Eng. J. 430 (2022) 132807.

    30. [30]

      B. He, P. Xiao, S. Wan, et al., Angew. Chem. Int. Ed. 62 (2023) e202313172.

    31. [31]

      H. Bian, T. Liu, D. Li, et al., Chem. Eng. J. 435 (2022) 135071.

    32. [32]

      X. Yue, L. Cheng, J. Fan, et al., Appl. Catal. B 304 (2022) 120979.

    33. [33]

      W. Yan, Y. Zhang, Y. Bi, Angew. Chem. Int. Ed. 63 (2024) e202316459.

    34. [34]

      Q. Ren, Y. He, H. Wang, et al., Research 6 (2023) 0244.

    35. [35]

      X. Yan, C. Duan, S. Yu, et al., J. CO2 Util. 79 (2024) 102648.

    36. [36]

      S. Cheng, Z. Sun, K.H. Lim, et al., Appl. Catal. B 343 (2024) 123583.

    37. [37]

      N.H. Kwon, J. Park, X. Jin, et al., ACS Nano 17 (2023) 23732–23745.  doi: 10.1021/acsnano.3c07566

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    3. [3]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    6. [6]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    7. [7]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Shujun NingZhiyuan WeiZhening ChenTianmin WuLu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057

    10. [10]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    11. [11]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    14. [14]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    15. [15]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    16. [16]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    17. [17]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    18. [18]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    19. [19]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    20. [20]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return