Citation: Runzi Cao, Heng Shao, Xinjie Wang, Jian Wang, Enxiang Shang, Yang Li. Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism[J]. Chinese Chemical Letters, ;2025, 36(7): 111029. doi: 10.1016/j.cclet.2025.111029 shu

Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism

    * Corresponding authors.
    E-mail addresses: shangenx@163.com (E. Shang), liyang_bnu@bnu.edu.cn (Y. Li).
  • Received Date: 30 September 2024
    Revised Date: 27 December 2024
    Accepted Date: 2 March 2025
    Available Online: 4 March 2025

Figures(6)

  • Photocatalysis holds great promise for the conversion of plastic waste into valuable chemicals. However, the conversion efficiency is constrained by the poor carriers' separation efficiency over the single component photocatalyst. Herein, we synthesized a novel type Ⅱ Nb2O5/GCN heterojunction to investigate its efficiency in the photocatalytic upcycling of polybutylene adipate/terephthalate (PBAT) microplastics (MPs) into acids and alcohols under visible light irradiation (100 mW/cm2). The findings indicate that the charge transfer within the type Ⅱ Nb2O5/GCN occurs from the conduction band of GCN to the conduction band of Nb2O5, thereby enhancing the separation efficiency of carriers Notably, the rates of ethanol and acetic acid generation from 1.5 mg/mL PBAT MPs treated with the 60%Nb2O5/GCN photocatalyst were 21.8-fold and 1.8-fold higher, respectively, compared to those by Nb2O5 alone. Density functional theory calculations demonstrate that the hydroxyl radicals (OH) produced by the Nb2O5/GCN heterojunction cleaves the ester bond (OC=O) of PBAT MP into the monomer. These monomers are subsequently converted into acids and alcohols through various reactions, including CC bond cleavage, hydrodeoxygenation, and CC bond coupling. This study highlights the effectiveness of heterojunction photocatalyst in converting PBAT MPs into valuable chemicals, thus significantly promoting advancements in bioplastics recycling.
  • 加载中
    1. [1]

      R. Venkatesan, Y. Zhang, G. Chen, Compos. Commun. 22 (2020) 100469.

    2. [2]

      H. Kim, H. Jeon, M. Lee, et al., ACS Appl. Polym. Mater. 5 (2023) 635–643.  doi: 10.1021/acsapm.2c01694

    3. [3]

      J. Jiao, X.B. Zeng, X.B. Huang, Adv. Ind. Eng. Polym. Res. 3 (2020) 19–26.

    4. [4]

      W. Zhang, M. Pasquinelli, Y. Li, Front. Env. Sci. Eng. 16 (2022) 12.

    5. [5]

      K. Dhineka, M. Sambandam, S. Sivadas, et al., Front. Env. Sci. Eng. 16 (2022) 1–11.  doi: 10.1109/oceanschennai45887.2022.9775261

    6. [6]

      K. Hu, W. Tian, Y. Yang, et al., Water Res. 198 (2021) 117144.

    7. [7]

      Y. Sun, W. Ding, Y. Wang, et al., Chin. Chem. Lett. 36 (2025) 109941.

    8. [8]

      F. Yuan, H. Chen, Y. Ding, et al., Water Res. 240 (2023) 120113.

    9. [9]

      H. Yadav, M.R.H. Khan, M. Quadir, et al., Environ. Sci. Technol. 57 (2023) 8225–8235.  doi: 10.1021/acs.est.3c00924

    10. [10]

      Y. Lu, Y. Zhang, Y. Deng, et al., Environ. Sci. Technol. 50 (2016) 4054–4060.  doi: 10.1021/acs.est.6b00183

    11. [11]

      T. Jiang, X. Wu, S. Yuan, et al., Front. Env. Sci. Eng. 18 (2024) 19.

    12. [12]

      S.L. Wright, F.J. Kelly, Environ. Sci. Technol. 51 (2017) 6634–6647.  doi: 10.1021/acs.est.7b00423

    13. [13]

      F. Wu, Y. Wang, Y. Zhao, et al., Nat. Commun. 15 (2024) 712.

    14. [14]

      W. Pang, B. Li, Y. Wu, et al., Chem. Eng. J. 486 (2024) 150342.

    15. [15]

      J. Li, Z. Lou, B. Li, Chin. Chem. Lett. 33 (2022) 1154–1168.

    16. [16]

      W. Zhang, S. Kim, L. Wahl, et al., Science. 379 (2023) 807–811.  doi: 10.1126/science.ade7485

    17. [17]

      S. Chu, B. Zhang, X. Zhao, et al., Adv. Energy Mater. 12 (2022) 2200435.

    18. [18]

      X. Jiao, K. Zheng, Q. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 15497–15501.  doi: 10.1002/anie.201915766

    19. [19]

      K. Zheng, Y. Wu, Z. Hu, et al., Chem. Soc. Rev. 52 (2023) 8–29.  doi: 10.1039/d2cs00688j

    20. [20]

      A.E. Nogueira, O.F. Lopes, A.B. Neto, C. Ribeiro, Chem. Eng. J. 312 (2017) 220–227.

    21. [21]

      S. Sun, M. Watanabe, J. Wu, Q. An, T. Ishihara, J. Am. Chem. Soc. 140 (2018) 6474–6482.  doi: 10.1021/jacs.8b03316

    22. [22]

      A. Sabbah, I. Shown, M. Qorbani, et al., Nano Energy. 93 (2022) 106809.

    23. [23]

      X. Wang, Z. Wang, Y. Li, J. Wang, G. Zhang, Appl. Catal. B: Environ. 319 (2022) 121895.

    24. [24]

      Y. Wu, F. Wang, X. Jin, et al., Water Res. 172 (2020) 115492.

    25. [25]

      K. Su, H. Liu, B. Zeng, et al., ACS Catal. 10 (2019) 1324–1333.

    26. [26]

      Y. Hong, C. Li, G. Zhang, et al., Chem. Eng. J. 299 (2016) 74–84.

    27. [27]

      T. Zhu, Y. Song, H. Ji, et al., Chem. Eng. J. 271 (2015) 96–105.

    28. [28]

      Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. 260 (2015) 117–125.

    29. [29]

      J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, J. Mater. Chem. 21 (2011) 14398–14401.  doi: 10.1039/c1jm12620b

    30. [30]

      H. Wu, Z. Hu, R. Liang, et al., Appl. Catal. B: Environ. 321 (2023) 122053.

    31. [31]

      J. Ke, J. Liu, H. Sun, et al., Appl. Catal. B: Environ. 200 (2017) 47–55.

    32. [32]

      I. Khan, N. Baig, A. Qurashi, A.C.S. Appl. Energy. Mater. 2 (2018) 607–615.

    33. [33]

      J. Wang, Y. Li, D. Huang, et al., Chem. Eng. J. 483 (2024) 149309.

    34. [34]

      X. Zhao, F. You, Environ. Sci. Technol. 57 (2023) 6506–6519.  doi: 10.1021/acs.est.2c08686

    35. [35]

      D. Sajwan, A. Sharma, M. Sharma, V. Krishnan, ACS Catal. 14 (2024) 4865–4926.  doi: 10.1021/acscatal.4c00290

    36. [36]

      K. Qi, J. Jing, G. Dong, P. Li, Y. Huang, Environ. Res. 212 (2022) 113405.

    37. [37]

      R. Das, K. Das, B. Ray, C.P. Vinod, S.C. Peter, Energ. Environ. Sci. 15 (2022) 1967–1976.  doi: 10.1039/d1ee02976b

    38. [38]

      X. Wang, Y. Yang, T. Wang, et al., ACS. Sustain. Chem. Eng. 9 (2021) 1203–1212.  doi: 10.1021/acssuschemeng.0c06717

    39. [39]

      G. Li, X. Nie, J. Chen, et al., Water Res. 86 (2015) 17–24.

    40. [40]

      C. Li, Q. Tian, Y. Zhang, et al., Water Res. 210 (2022) 117985.

    41. [41]

      Y. Wang, X. Li, S. Liu, et al., ACS Catal. 12 (2022) 2770–2780.  doi: 10.1021/acscatal.1c05447

    42. [42]

      J. Li, C. He, N. Xu, et al., Chem. Eng. J. 452 (2023) 139191.

    43. [43]

      Q. Li, J. Ren, Y. Hao, et al., Appl. Catal. B: Environ. 317 (2022) 121761.

    44. [44]

      L. Wang, Y. Li, P. Han, Sci. Rep. 11 (2021) 22950.

    45. [45]

      J. Duan, Y. Li, J. Gao, et al., Water Res. 216 (2022) 118320.

    46. [46]

      B. Liu, T. Guan, G. Wu, Y. Fu, Y. Weng, Polymers (Basel) 14 (2022) 1515.

    47. [47]

      A. Kanwal, M. Zhang, F. Sharaf, C. Li, Polym. Bull. 79 (2022) 9059–9073.  doi: 10.1007/s00289-021-03946-w

    48. [48]

      X. Zhou, G. Yin, Y. Huang, Y. Li, D. Xie, Molecules 28 (2023) 2689.  doi: 10.3390/molecules28062689

    49. [49]

      P.K. Samantaray, C. Ellingford, S. Farris, et al., ACS Sustain. Chem. Eng. 10 (2022) 1267–1276.  doi: 10.1021/acssuschemeng.1c07376

    50. [50]

      L. Giotta, D. Mastrogiacomo, F. Italiano, et al., Langmuir 27 (2011) 3762–3773.  doi: 10.1021/la104868m

    51. [51]

      L. Chen, H. Ji, J. Qi, et al., Chem. Eng. J. 406 (2021) 126877.

    52. [52]

      X.H. Yi, H. Ji, C.C. Wang, et al., Appl. Catal. B: Environ. 293 (2021) 120229.

    53. [53]

      M.S. Numin, K. Jumbri, K.E. Kee, et al., Polymers (Basel) 15 (2023) 2155.  doi: 10.3390/polym15092155

    54. [54]

      F. De Vleeschouwer, V. Van Speybroeck, M. Waroquier, P. Geerlings, F. De Proft, Org. Lett. 9 (2007) 2721–2724.  doi: 10.1021/ol071038k

    55. [55]

      T. Li, X. Wang, Y. Chen, J. Liang, L. Zhou, Chem. Eng. J. 393 (2020) 124735.

    56. [56]

      R. Yin, W. Guo, H. Wang, et al., Chem. Eng. J. 334 (2018) 2539–2546.

    57. [57]

      C. Chen, T. Ma, Y. Shang, et al., Appl. Catal. B: Environ. 250 (2019) 382–395.

    58. [58]

      Y.K. Song, S.H. Hong, M. Jang, et al., Environ. Sci. Technol. 51 (2017) 4368–4376.  doi: 10.1021/acs.est.6b06155

    59. [59]

      S. Nitopi, E. Bertheussen, S.B. Scott, et al., Chem. Rev. 119 (2019) 7610–7672.  doi: 10.1021/acs.chemrev.8b00705

    60. [60]

      W. Kirmse, Carbene Chemistry, 2nd. ed., Academic Press, New York, 1971.

  • 加载中
    1. [1]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    2. [2]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    3. [3]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    4. [4]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    5. [5]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    6. [6]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    7. [7]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    8. [8]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    13. [13]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    16. [16]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    17. [17]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    20. [20]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return