Citation: Jingyi Yang, Sihan Wang, Xubiao Luo, Zhenyang Yu, Yanbo Zhou. Fenton-like process in antibiotic-containing wastewater treatment: Applications and toxicity evaluation[J]. Chinese Chemical Letters, ;2025, 36(12): 110996. doi: 10.1016/j.cclet.2025.110996 shu

Fenton-like process in antibiotic-containing wastewater treatment: Applications and toxicity evaluation

    * Corresponding author at: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
    E-mail address: yanbo_zhou@163.com (Y. Zhou).
  • Received Date: 21 November 2024
    Revised Date: 14 January 2025
    Accepted Date: 21 February 2025
    Available Online: 23 February 2025

Figures(5)

  • Antibiotic-contaminated wastewater poses a global threat to aquatic ecosystems. Fenton-like oxidative processes effectively decompose recalcitrant pollutants. While these oxidative processes effectively break down target contaminants, they may also produce uncontrolled intermediates, potentially resulting in unexpected combined toxicities. This review explores the chemical mechanisms behind Fenton-like reactions, particularly in antibiotic removal, and evaluates the formation of byproducts and their potential toxicological effects. Furthermore, recommendations for optimizing catalyst design and treatment conditions are provided to enhance degradation performance while minimizing ecological risks. This study highlights critical concerns regarding the toxicity of degradation byproducts and their impact on ecosystems by integrating chemical and biological risk assessments. By integrating chemical and biological risk assessments with computational toxicology, particularly quantitative structure-activity relationship (QSAR) modeling, this study proposes a comprehensive approach to evaluate degradation and toxicity. This work highlights the importance of a comprehensive framework for evaluating degradation efficiency and toxicity, contributing to safer and more effective antibiotic wastewater treatment strategies. The findings underscore the importance of balancing degradation efficiency with environmental safety in wastewater treatment processes involving advanced oxidative technologies.
  • 加载中
    1. [1]

      Y. Zhou, J. He, J. Lu, et al., Chin. Chem. Lett. 31 (2020) 2623–2626.

    2. [2]

      C. Bhagat, M. Kumar, V.K. Tyagi, P.K. Mohapatra, npj Clean. Water 3 (2020) 42.

    3. [3]

      Y. Zhou, Q. Liu, J. Lu, et al., J. Hazard. Mater. 393 (2020) 122414.

    4. [4]

      E.Y. Klein, M. Milkowska-Shibata, K.K. Tseng, et al., Lancet. Infect. Dis. 21 (2021) 107–115.

    5. [5]

      C. Monahan, S. Harris, D. Morris, E. Cummins, Sci. Total Environ. 826 (2022) 154008.

    6. [6]

      M. Hazra, J.E.M. Watts, J.B. Williams, H. Joshi, Sci. Total Environ. 917 (2024) 170433.

    7. [7]

      N. Jallouli, L.M. Pastrana-Martínez, A.R. Ribeiro, et al., Chem. Eng. J. 334 (2018) 976–984.

    8. [8]

      M.S. Fouad, E.F. Mustafa, M.S. Hellal, M.A. Mwaheb, Sci. Rep. 14 (2024) 18849.

    9. [9]

      J. Guo, X. Jin, Y. Zhou, et al., J. Environ. Manage. 371 (2024) 123125.

    10. [10]

      Z. Huang, L. Hu, J. Yang, et al., Environ. Int. 181 (2023) 108304.

    11. [11]

      S. Zhang, H. Zheng, P.G. Tratnyek, Nat. Water 1 (2023) 666–681.  doi: 10.1038/s44221-023-00098-1

    12. [12]

      M.I.R. Baig, P. Kadu, P. Bawane, et al., J. Antibiot. 76 (2023) 629–641.  doi: 10.1038/s41429-023-00649-4

    13. [13]

      S. Wang, J. Yang, X. Jin, et al., Sep. Purif. Technol. 356 (2025) 129841.

    14. [14]

      J. Guo, L. Ling, Q. Lu, et al., Chin. Chem. Lett. 36 (2025) 110380.

    15. [15]

      E.M. Abd El-Monaem, H.M. Elshishini, S.S. Bakr, et al., npj Clean Water 6 (2023) 34.

    16. [16]

      S. Xiao, M. Cheng, H. Zhong, et al., Chem. Eng. J. 384 (2020) 123265.

    17. [17]

      H. Zhou, H. Zhang, Y. He, et al., Appl. Catal. B 286 (2021) 119900.

    18. [18]

      J. Lu, Y. Zhou, Y. Zhou, Chem. Eng. J. 422 (2021) 130126.

    19. [19]

      S.A. Walling, W. Um, C.L. Corkhill, N.C. Hyatt, npj Mater. Degrad. 5 (2021) 50.

    20. [20]

      J. Ma, R. Zhou, F. Yu, Desalination 571 (2024) 117107.

    21. [21]

      L. Jiang, A. Raza, A.B. El Ariss, et al., Sci. Rep. 14 (2024) 2419.

    22. [22]

      H. Huang, R. Ma, H. Ren, Front. Environ. Sci. 18 (2024) 72.

    23. [23]

      G. Prasannamedha, P.S. Kumar, J. Clean. Prod. 250 (2020) 119553.

    24. [24]

      V. Vinayagam, K.N. Palani, S. Ganesh, et al., Environ. Res. 240 (2024) 117500.

    25. [25]

      F. Li, K. Liu, Y. Bao, et al., Water Res. 254 (2024) 121373.

    26. [26]

      Y. Huang, K. Zhu, Z. Hu, et al., J. Hazard. Mater. 466 (2024) 133611.

    27. [27]

      Z.Y. Yu, G. Sun, Y.J. Liu, et al., Ecotoxicol. Environ. Saf. 135 (2017) 312–318.

    28. [28]

      X.Y. Du, J.Y. Yang, Sci. Total Environ. 919 (2024) 170745.

    29. [29]

      M. Burkhardt, M. Rohr, I.H. und, S. Gartiser, K.W. Korrespond, Wasserwirtsch 08 (2020) 001.

    30. [30]

      W. Brack, B.I. Escher, E. Müller, et al., Environ. Sci. Eur. 30 (2018) 33.

    31. [31]

      M.A. Aljallal, Q. Chaudhry, N.R. Price, Sci. Rep. 14 (2024) 18330.

    32. [32]

      I.A. Vasiliadou, R. Molina, F. Martinez, et al., Sci. Total Environ. 630 (2018) 809–819.

    33. [33]

      R. Ricky, S. Shanthakumar, Sci. Rep. 13 (2023) 13911.

    34. [34]

      K.E. Manz, A. Feerick, J.M. Braun, et al., J. Expo. Sci. Environ. Epidemiol. 33 (2023) 524–536.  doi: 10.1038/s41370-023-00574-6

    35. [35]

      X. Li, G. Li, B. Chen, et al., Environ. Sci. Pollut. 28 (2021) 57530–57542.  doi: 10.1007/s11356-021-14672-1

    36. [36]

      H. Ghazal, E. Koumaki, J. Hoslett, et al., J. Clean. Prod. 361 (2022) 132079.

    37. [37]

      Q. Lu, J. Lu, J. Lei, et al., Chin. Chem. Lett. 36 (2025) 110017.

    38. [38]

      W. Yao, Y. Qi, Y. Han, et al., Water Res. 249 (2024) 120881.

    39. [39]

      J. Lu, Y. Zhang, J. Wu, et al., Environ. Pollut. 252 (2019) 450–460.

    40. [40]

      S. Liu, Q. Xu, S. Lou, et al., Ecotoxicol. Environ. Saf. 259 (2023) 115025.

    41. [41]

      S. Babić, L. Ćurković, D. Ljubas, M. Čizmić, Curr. Opin. Green Sustain. Chem. 6 (2017) 34–41.

    42. [42]

      Q. Zhang, Y. Peng, Y. Peng, et al., Water Res. 249 (2024) 120931.

    43. [43]

      O.A. Alsager, M.N. Alnajrani, H.A. Abuelizz, I.A. Aldaghmani, Ecotoxicol. Environ. Saf. 158 (2018) 114–122.

    44. [44]

      J. Fu, N. Liu, L. Mei, et al., Sci. Rep. 9 (2019) 18734.

    45. [45]

      A. Wang, Z. Zheng, H. Wang, et al., Appl. Catal. B 277 (2020) 119171.

    46. [46]

      P. Kumari, N. Bahadur, X.A. Conlan, et al., Water Res. 218 (2022) 118519.

    47. [47]

      A. Huang, M. Yan, J. Lin, et al., Int. J. Environ. Res. Public. Health 18 (2021) 4909.  doi: 10.3390/ijerph18094909

    48. [48]

      Y. Zhang, J. Guo, X. Zou, et al., Chem. Eng. J. 504 (2025) 159042.

    49. [49]

      D. Cheng, H.H. Ngo, W. Guo, et al., J. Hazard. Mater. 387 (2020) 121682.

    50. [50]

      T. Zhang, Y. Hu, L. Jiang, et al., Chem. Eng. J. 358 (2019) 589–597.

    51. [51]

      J. Lu, T. Wang, Y. Zhou, et al., J. Hazard. Mater. 383 (2020) 121133.

    52. [52]

      Y. Liu, Y. Lin, W. Wang, et al., Environ. Sci. Technol. 58 (2024) 8009–8019.  doi: 10.1021/acs.est.3c09086

    53. [53]

      B. Gokulakrishnan, G. Satishkumar, Sep. Purif. Technol. 333 (2024) 125690.

    54. [54]

      X. Chen, L. Yao, J. He, et al., J. Hazard. Mater. 449 (2023) 131024.

    55. [55]

      J. Cao, J. Li, B. Yang, et al., Cell. Rep. Phys. Sci. 5 (2024) 101966.

    56. [56]

      S. Pei, S. Wang, Y. Lu, et al., Nano Res. 17 (2024) 9446–9471.  doi: 10.1007/s12274-024-6973-y

    57. [57]

      L. Di, X. Chen, J. Lu, et al., J. Water Process. Eng. 53 (2023) 103913.

    58. [58]

      X. Chen, C. Duan, Y. Zhou, et al., J. Clean. Prod. 395 (2023) 136323.

    59. [59]

      W. Gu, X. Huang, Y. Tian, et al., Appl. Surf. Sci. 538 (2021) 147813.

    60. [60]

      R. Gonzalez-Olmos, F.D. Kopinke, K. Mackenzie, A. Georgi, Environ. Sci. Technol. 47 (2013) 2353–2360.  doi: 10.1021/es303885y

    61. [61]

      J. He, C.J. Miller, R. Collins, et al., Environ. Sci. Technol. 54 (2020) 1167–1176.  doi: 10.1021/acs.est.9b03975

    62. [62]

      J. He, X. Yang, B. Men, et al., Chem. Eng. J. 258 (2014) 433–441.

    63. [63]

      Y. Chen, C.J. Miller, T.D. Waite, Environ. Sci. Technol. 55 (2021) 14414–14425.  doi: 10.1021/acs.est.1c00284

    64. [64]

      X. Nie, G. Li, S. Li, et al., Appl. Catal. B 300 (2022) 120734.

    65. [65]

      R.C.C. Costa, M.F.F. Lelis, L.C.A. Oliveira, et al., J. Hazard. Mater. 129 (2006) 171–178.

    66. [66]

      P. Baldrian, V. Merhautová, J. Gabriel, et al., Appl. Catal. B 66 (2006) 258–264.

    67. [67]

      Y. Zhou, Y. He, M. Gao, et al., Chin. Chem. Lett. 35 (2024) 108690.

    68. [68]

      C. Lai, F. Huang, G. Zeng, et al., Chemosphere 224 (2019) 910–921.

    69. [69]

      P. Manjuri Bhuyan, S. Borah, B. Kumar Bhuyan, et al., Sep. Purif. Technol. 312 (2023) 123387.

    70. [70]

      J. Scaria, K.V. Anupama, P.V. Nidheesh, Sci. Total Environ. 771 (2021) 145291.

    71. [71]

      T. Wang, J. He, J. Lu, et al., Chin. Chem. Lett. 33 (2022) 3585–3593.

    72. [72]

      J. Wu, J. Wang, C. Liu, et al., Environ. Sci. Technol. 56 (2022) 13996–14007.  doi: 10.1021/acs.est.2c03590

    73. [73]

      V. Jurado-Davila, K.G.P. Nunes, G.P. Oshiro, L.A. Féris, J. Environ. Chem. Eng. 11 (2023) 111423.

    74. [74]

      W. Zhao, B. Zhou, Sep. Purif. Technol. 259 (2021) 118218.

    75. [75]

      K. Lv, L. Ling, Q. Lu, et al., Sep. Purif. Technol. 344 (2024) 127207.

    76. [76]

      Q. Chen, F. Lv, H. Zhang, P. He, Water Res. 229 (2023) 119479.

    77. [77]

      X. Song, M. Zhang, X. Xiu, et al., J. Environ. Manage. 349 (2024) 119541.

    78. [78]

      H. Liu, M. Cui, Y. Liu, et al., J. Ind. Eng. Chem. 125 (2023) 360–369.

    79. [79]

      M. Xu, J. Wei, X. Chen, et al., J. Environ. Chem. Eng. 10 (2022) 108409.

    80. [80]

      G. Yang, Y. Liang, H. Zheng, et al., Sep. Purif. Technol. 310 (2023) 123167.

    81. [81]

      G. Yang, Y. Liang, Z. Xiong, et al., Chem. Eng. J. 425 (2021) 130689.

    82. [82]

      L. Di, T. Wang, Q. Lu, et al., Sep. Purif. Technol. 339 (2024) 126740.

    83. [83]

      J. Lu, Y. Zhou, L. Ling, Y. Zhou, Chem. Eng. J. 446 (2022) 137067.

    84. [84]

      Q. Lu, J. Lu, Y. Zhou, Y. Zhou, Sep. Purif. Technol. 358 (2025) 130458.

    85. [85]

      X. Ma, X. Liu, X. Shang, et al., J. Hazard. Mater. 469 (2024) 134087.

    86. [86]

      Z. Wang, Y. Du, T. Liu, et al., Environ. Sci. Technol. 58 (2024) 4812–4823.  doi: 10.1021/acs.est.3c10800

    87. [87]

      J. Yao, B. Yu, H. Li, et al., Chem. Eng. Sci. 276 (2023) 118779.

    88. [88]

      Y. Zhou, X. Fang, Z. Zhang, et al., Environ. Technol. 38 (2017) 2793–2799.

    89. [89]

      X.Y. Zhang, T.S. Liu, J.Y. Hu, Water Res. 261 (2024) 122069.

    90. [90]

      A. Tufail, J. Al-Rifai, W.E. Price, et al., Chemosphere 350 (2024) 140978.

    91. [91]

      N.J. Zhu, S. Ghosh, M.A. Edwards, A. Pruden, Environ. Sci. Technol. 55 (2021) 8329–8340.  doi: 10.1021/acs.est.1c01199

    92. [92]

      M. Ahmed, M.O. Mavukkandy, A. Giwa, et al., npj Clean Water 5 (2022) 12.  doi: 10.22271/plants.2022.v10.i1a.1355

    93. [93]

      Y. Yu, Y. Zhou, Z. Wang, et al., Sci. Rep. 7 (2017) 4168.

    94. [94]

      V.M. D’Costa, C.E. King, L. Kalan, et al., Nature 477 (2011) 457–461.  doi: 10.1038/nature10388

    95. [95]

      Z.J. Lin, Z.C. Zhou, X.-Y. Shuai, et al., Environ. Sci. Technol. 58 (2024) 6793–6803.  doi: 10.1021/acs.est.3c10895

    96. [96]

      Q.H. Liu, L. Yuan, Z.H. Li, et al., Environ. Sci. Technol. 58 (2024) 17990–17998.  doi: 10.1021/acs.est.4c08211

    97. [97]

      S. Li, Y. Zhu, G. Zhong, et al., Environ. Sci. Technol. 58 (2024) 5534–5547.  doi: 10.1021/acs.est.4c00993

    98. [98]

      X. Deng, J. Chen, L.-A. Hansson, et al., Natl. Sci. Rev. 8 (2021) nwaa140.

    99. [99]

      Y. Yang, Z.H. Xie, H. Wang, et al., Sci. Total Environ. 950 (2024) 175401.

    100. [100]

      X. Liu, X. Zheng, L. Zhang, et al., J. Hazard. Mater. 437 (2022) 129355.

    101. [101]

      S. Zhang, Y. Han, J. Peng, et al., Environ. Int. 171 (2023) 107700.

    102. [102]

      M. Gustavsson, S. Käll, P. Svedberg, et al., Sci. Adv. 10 (2024) eadk6669.

    103. [103]

      S. Li, Y. Wu, H. Zheng, et al., Chemosphere 311 (2023) 136977.

    104. [104]

      S.J. Markich, J.P. Hall, J.M. Dorsman, P.L. Brown, Mar. Pollut. Bull. 192 (2023) 114964.

    105. [105]

      D. Giesen, C.A.M. van Gestel, Chemosphere 90 (2013) 2667–2673.

    106. [106]

      D. Dai, C. Brown, H. Bürgmann, et al., Microbiome 10 (2022) 20.

    107. [107]

      T.U. Berendonk, C.M. Manaia, C. Merlin, et al., Nat. Rev. Microbiol. 13 (2015) 310–317.  doi: 10.1038/nrmicro3439

    108. [108]

      W. Li, C. Liu, H.C. Ho, et al., Lancet. Reg. Health. West. Pac. 30 (2023) 100628.

    109. [109]

      R. Li, J. Lu, Z. Liu, et al., Nat. Mach. Intell. 6 (2024) 1457–1466.  doi: 10.1038/s42256-024-00923-6

    110. [110]

      N. Wang, G. Dong, R. Qiao, et al., Environ. Sci. Technol. 58 (2024) 9487–9499.  doi: 10.1021/acs.est.4c00480

    111. [111]

      P. Zhang, M. Sun, C. Zhou, et al., Environ. Sci. Technol. 58 (2024) 4781–4791.  doi: 10.1021/acs.est.3c06252

    112. [112]

      Z. Jinmiao, Z. Ziting, Y. Saihong, Acta Sci. Circumst. 42 (2022) 1–11.

    113. [113]

      J. Wang, D. Zhi, H. Zhou, et al., Water Res. 137 (2018) 324–334.

    114. [114]

      L. Zhilei, F. Yongjie, W. Chunshan, et al., Environ. Chem. 43 (2024) 82–91.

    115. [115]

      J. Neuwoehner, T. Zilberman, K. Fenner, B.I. Escher, Aquat. Toxicol. 97 (2010) 58–67.

    116. [116]

      D.E. Dawson, B.L. Ingle, K.A. Phillips, et al., Environ. Sci. Technol. 55 (2021) 6505–6517.  doi: 10.1021/acs.est.0c06117

    117. [117]

      N. Klüver, C. Vogs, R. Altenburger, et al., Chemosphere 164 (2016) 164–173.

    118. [118]

      J. Dan, Z. Jianguo, L. Na, et al., Asian J. Ecotoxicol. Chemosphere 9 (2014) 71–80.

    119. [119]

      C. Hansch, A. Kurup, R. Garg, H. Gao, Chem. Rev. 101 (2001) 619–672.

    120. [120]

      H. Liu, E. Papa, P. Gramatica, Chem. Res. Toxicol. 19 (2006) 1540–1548.  doi: 10.1021/tx0601509

    121. [121]

      Y.K Wang, QSAR Integrated Modeling Technology in ADMET Evaluation and Acute Toxicity Prediction, University of Science and Technology Liaoning, Liaoning, China, 2022.

    122. [122]

      X. Wu, Q. Zhang, J. Hu, SAR QSAR Environ. Res. 27 (2016) 147–164.

    123. [123]

      A. Nath, P. De, K. Roy, Chemosphere. 287 (2022) 131954.

    124. [124]

      M. Nendza, M. Müller, SAR QSAR Environ. Res. 18 (2007) 155–168.  doi: 10.1080/10629360601054354

    125. [125]

      M. Nendza, A. Wenzel, Environ. Sci. Pollut. Res. 13 (2006) 192–203.  doi: 10.1065/espr2006.01.013

    126. [126]

      S. Chen, G. Sun, T. Fan, et al., Sci. Total Environ. 876 (2023) 162736.

    127. [127]

      L.T. Qin, Y.H. Chen, X. Zhang, et al., Chemosphere 198 (2018) 122–129.

    128. [128]

      R. He, X. Wu, H. Mu, et al., Water Res. 243 (2023) 120338.

    129. [129]

      L. Li, J.N. Westgate, L. Hughes, et al., Environ. Sci. Technol. 52 (2018) 14235–14244.  doi: 10.1021/acs.est.8b04059

    130. [130]

      Z. Cheng, Q. Chen, S. Liu, et al., J. Hazard. Mater. 430 (2022) 128269.

  • 加载中
    1. [1]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    2. [2]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    3. [3]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    4. [4]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    5. [5]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    6. [6]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    7. [7]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    8. [8]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    11. [11]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    12. [12]

      Siyuan YouRui LiHaoyun LuLifei HouXing XuYanan Shang . Modulation of the structures and properties of iron-carbon composites by different small molecular carbon sources for Fenton-like reactions. Chinese Chemical Letters, 2025, 36(9): 110955-. doi: 10.1016/j.cclet.2025.110955

    13. [13]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    14. [14]

      Xiaoyun LeiHanghang ZhaoChao BaiLonglong GengXing Xu . Wood-derived catalysts for green and stable Fenton-like chemistry: From basic mechanisms to catalytic modules and future inspiration. Chinese Chemical Letters, 2025, 36(10): 111550-. doi: 10.1016/j.cclet.2025.111550

    15. [15]

      Lina ZouDengke WangShiqin LaiXunheng JiangSiqi ChenLanqing DengDong FanHengshuai LiZhigang ZhouDenglong ChenXiangyang YaoJianping Zou . Local spin-state manipulation of iron single-atom sites induced by sulfur modification to boost Fenton-like reaction. Chinese Chemical Letters, 2025, 36(12): 111094-. doi: 10.1016/j.cclet.2025.111094

    16. [16]

      Ning LiuMan TianYe ZhangJinming YangZhihao WangWangxi DaiGuixiang QuanJianqiu LeiXiaodong ZhangLiang Tang . Three-dimensional MIL-88A(Fe)-derived α-Fe2O3 and graphene composite for efficient photo-Fenton-like degradation of ciprofloxacin. Chinese Chemical Letters, 2025, 36(12): 111063-. doi: 10.1016/j.cclet.2025.111063

    17. [17]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    18. [18]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    19. [19]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    20. [20]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return