Citation: Yaohua Wu, Yihong Chen, Juanshan Du, Huazhe Wang, Chuchu Chen, Wenrui Jia, Yongqi Liang, Qinglian Wu, Wan-Qian Guo. Ice-assisted synthesis of functional materials: Strategies and environmental applications[J]. Chinese Chemical Letters, ;2025, 36(12): 110944. doi: 10.1016/j.cclet.2025.110944 shu

Ice-assisted synthesis of functional materials: Strategies and environmental applications

    * Corresponding authors.
    E-mail addresses: dujuanshan317@163.com (J. Du), guowanqian@126.com (W.-Q. Guo).
    1 These two authors contributed equally to this work.
  • Received Date: 6 September 2024
    Revised Date: 4 January 2025
    Accepted Date: 10 February 2025
    Available Online: 11 February 2025

Figures(6)

  • Ice-assisted synthesis is a facile, effective, and eco-friendly approach for preparing environmental functional materials. The quasi-liquid layer (QLL) or ice grain boundary (IGB) of the ice provides ideal interface-confined environments for preparing two-dimensional (2D) sheet-like, three-dimensional (3D) hierarchical porous, polymeric hybrid, and atomically dispersed materials via the in-situ interfacial chemical reactions. Ice-templating physical pretreatment allows directional assembly of preformed materials, sheet exfoliation from bulk materials, transfer or cleaning of 2D materials, uniform dispersion of precursors, and self-assembly of nanoparticles. Additionally, the ice-melting process offers a novel way to prepare nanomaterials of uniform size due to the ultraslow release of reactants from the ice crystals. Furthermore, environmental applications of ice-assisted synthetic materials have been concluded. Advanced membrane materials synthesized based on ice chemistry exhibit superior water permeance, ion selectivity, and disinfection. Also, ice-assisted synthesis has innate advantages for designing environmental functional catalysts or adsorbents dedicated to environmental remediation. Finally, the challenges of the current progress in this field are discussed.
  • 加载中
    1. [1]

      T. Bartels-Rausch, Nature 494 (2013) 27–29.  doi: 10.1038/494027a

    2. [2]

      J.S. Du, K. Kim, D.W. Min, et al., Environ. Sci. Technol. 56 (2022) 1007–1016.  doi: 10.1021/acs.est.1c06747

    3. [3]

      R. O’Concubhair, J.R. Sodeau, Acc. Chem. Res. 46 (2013) 2716–2724.  doi: 10.1021/ar400114e

    4. [4]

      J. Du, Y. Hu, K. Kim, et al., Environ. Sci. Technol. 57 (2023) 20272–20281.  doi: 10.1021/acs.est.3c07278

    5. [5]

      J. Du, K. Kim, S. Son, et al., Environ. Sci. Technol. 57 (2023) 5317–5326.  doi: 10.1021/acs.est.3c00604

    6. [6]

      Y. Wu, H. Wang, J. Du, et al., Environ. Sci. Technol. 58 (2024) 17948–17958.  doi: 10.1021/acs.est.4c07493

    7. [7]

      T. Kling, F. Kling, D. Donadio, J. Phys. Chem. C 122 (2018) 24780–24787.  doi: 10.1021/acs.jpcc.8b07724

    8. [8]

      L.A. Wilen, J.S. Wettlaufer, M. Elbaum, et al., Phys. Rev. B 52 (1995) 12426–12433.

    9. [9]

      J.S. Yeon, N. Gupta, P. Bhattacharya, et al., Adv. Funct. Mater. 32 (2022) 2112509.

    10. [10]

      K. Kim, M.J. Park, Nanoscale 12 (2020) 14320–14338.  doi: 10.1039/d0nr02624g

    11. [11]

      D. Barpuzary, K. Kim, M.J. Park, J. Polym. Sci., Part B: Polym. Phys. 57 (2019) 1169–1176.  doi: 10.1002/polb.24777

    12. [12]

      S.W. Wu, C.Q. Zhu, Z.Y. He, et al., Nat. Commun. 8 (2017) 15154.

    13. [13]

      E.G. Hammerschmidt, Ind. Eng. Chem. 26 (1934) 851–855.  doi: 10.1021/ie50296a010

    14. [14]

      W. Mahler, M.F. Bechtold, Nature 285 (1980) 27–28.  doi: 10.1038/285027a0

    15. [15]

      H.M. Tong, I. Noda, C.C. Gryte, Colloid. Polym. Sci. 262 (1984) 589–595.

    16. [16]

      E. Munch, M.E. Launey, D.H. Alsem, et al., Science 322 (2008) 1516–1520.  doi: 10.1126/science.1164865

    17. [17]

      L. Huong, D.B. Thinh, T.H. Tu, et al., Surf. Interfaces 26 (2021) 101309.

    18. [18]

      X.H. Huang, J. Tian, Y.W. Li, et al., Langmuir 36 (2020) 10895–10904.  doi: 10.1021/acs.langmuir.0c00654

    19. [19]

      P. Zhou, F. Lv, N. Li, et al., Nano Energy 56 (2019) 127–137.

    20. [20]

      H. Wang, F. Wang, S. Zhang, et al., Adv. Mater. 36 (2024) 2400764.

    21. [21]

      G. Zheng, X. Kang, H. Ye, et al., Chin. Chem. Lett. 35 (2024) 108817.

    22. [22]

      N. Song, S.Y. Ren, Y. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2204751.

    23. [23]

      Z.G. Zhu, L.L. Zhong, Y. Wang, et al., Chin. Chem. Lett. 31 (2020) 2619–2622.

    24. [24]

      Z.X. Wei, B. Ding, H. Dou, et al., Chin. Chem. Lett. 30 (2019) 2110–2122.

    25. [25]

      Y.Q. Zhang, H. Wang, J. Guo, et al., Science 382 (2023) 202–206.

    26. [26]

      K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, et al., J. Environ. Sci. 79 (2019) 174–199.

    27. [27]

      H. Kang, Acc. Chem. Res. 38 (2005) 893–900.  doi: 10.1021/ar0501471

    28. [28]

      G. Kim, C. Jo, W. Kim, et al., Energy Environ. Sci. 6 (2013) 2932–2938.  doi: 10.1039/c3ee41880d

    29. [29]

      G. Colón, M.C. Hidalgo, J.A. Navıo, Catal. Today 76 (2002) 91–101. ´

    30. [30]

      Y. Li, X. Sun, H. Li, et al., Powder Technol. 194 (2009) 149–152.

    31. [31]

      M. Hussain, R. Ceccarelli, D.L. Marchisio, et al., Chem. Eng. J. 157 (2010) 45–51.

    32. [32]

      B. Tyagi, K. Sidhpuria, B. Shaik, et al., Ind. Eng. Chem. Res. 45 (2006) 8643–8650.  doi: 10.1021/ie060519p

    33. [33]

      G.J. Owens, R.K. Singh, F. Foroutan, et al., Prog. Mater Sci. 77 (2016) 1–79.

    34. [34]

      D. Bokov, A.T. Jalil, S. Chupradit, et al., Adv. Mater. Sci. Eng. 2021 (2021) 5102014.

    35. [35]

      J.N. Hasnidawani, H.N. Azlina, H. Norita, et al., Procedia Chem. 19 (2016) 211–216.

    36. [36]

      E.N. Konyushenko, J. Stejskal, M. Trchova, et al., Synth. Met. 158 (2008) 927–933.

    37. [37]

      H.Y. Ma, Y. Gao, Y.H. Li, et al., J. Phys. Chem. C 113 (2009) 9047–9052.  doi: 10.1021/jp8112683

    38. [38]

      I.Y. Choi, J. Lee, H. Ahn, et al., Angew. Chem. Int. Ed. 54 (2015) 10497–10501.  doi: 10.1002/anie.201503332

    39. [39]

      K. Kim, H. Ahn, M.J. Park, ACS Appl. Mater. Interfaces 9 (2017) 30278–30282.  doi: 10.1021/acsami.7b10821

    40. [40]

      K. Kim, B. Kim, K. Kim, et al., Macromol. Rapid Commun. 42 (2021) 2100565.

    41. [41]

      D. Barpuzary, K. Kim, M.J. Park, ACS Nano 13 (2019) 3953–3963.  doi: 10.1021/acsnano.8b07294

    42. [42]

      J. Zhang, X. Fan, X. Meng, et al., ACS Nano 15 (2021) 8870–8882.  doi: 10.1021/acsnano.1c01459

    43. [43]

      X.M. Peng, J. Zhang, J. Zhou, et al., Angew. Chem. Int. Ed. 62 (2023) e202301940.

    44. [44]

      H. Wei, K. Huang, D. Wang, et al., Nat. Commun. 8 (2017) 1490.

    45. [45]

      S. Deville, Scr. Mater. 147 (2018) 119–124.

    46. [46]

      W. Tanthapanichakoon, H. Tamon, K. Nakagawa, et al., Eng. J. 17 (2013) 1–8.  doi: 10.4186/ej.2013.17.3.1

    47. [47]

      L. Zhang, X. Liu, A. Deb, et al., ACS Sustainable Chem. Eng. 7 (2019) 19910–19917.  doi: 10.1021/acssuschemeng.9b05413

    48. [48]

      Z.W. Fang, S.S. Tang, Z.Q. Wang, et al., ACS Cent. Sci. 8 (2022) 627–635.  doi: 10.1021/acscentsci.2c00252

    49. [49]

      Q.Z. Zhang, S.Y. Huang, J.J. Deng, et al., Adv. Funct. Mater. 29 (2019) 1902486.

    50. [50]

      P. Zhang, Q.Z. Zhu, R.A. Soomro, et al., Adv. Funct. Mater. 30 (2020) 2000922.

    51. [51]

      H. Liu, Q.H. Thi, P. Man, et al., Adv. Mater. 35 (2023) 2210503.

    52. [52]

      G. Cossio, E.T. Yu, Nano Lett. 20 (2020) 5090–5096.  doi: 10.1021/acs.nanolett.0c01277

    53. [53]

      Y. Song, X. Song, X. Wang, et al., J. Am. Chem. Soc. 144 (2022) 17457–17467.  doi: 10.1021/jacs.2c06109

    54. [54]

      X. Song, Y. Song, X. Li, et al., Small 20 (2024) 2305459.

    55. [55]

      K. Wenderich, G. Mul, Chem. Rev. 116 (2016) 14587–14619.  doi: 10.1021/acs.chemrev.6b00327

    56. [56]

      S. Yang, J. Kim, Y.J. Tak, et al., Angew. Chem. Int. Ed. 55 (2016) 2058–2062.  doi: 10.1002/anie.201509241

    57. [57]

      Y.L. Xiao, X.C. Fang, W. Deng, et al., Adv. Mater. Interfaces 7 (2020) 1901753.

    58. [58]

      W. Deng, J.S. Jie, X.Z. Xu, et al., Adv. Mater. 32 (2020) 1908340.

    59. [59]

      H.H. Wei, K. Huang, L. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 3354–3359.  doi: 10.1002/anie.201711128

    60. [60]

      B. He, J.J. Tan, K.Y. Liew, et al., J. Mol. Catal. A: Chem. 221 (2004) 121–126.

    61. [61]

      Y.Z. Chen, D.J. Jiang, Y.J. Zhang, et al., J. Mater. Chem. A 8 (2020) 25275–25282.  doi: 10.1039/d0ta09502h

    62. [62]

      X.M. Wang, X.B. Chen, L.M. Ye, et al., Mol. Catal. 497 (2020) 111225.

    63. [63]

      C. Shuang, Z. Haixiang, W. Xueman, et al., J. Chem. Technol. Biotechnol. 98 (2023) 506–515.  doi: 10.1002/jctb.7266

    64. [64]

      M.R. Chowdhury, J. Steffes, B.D. Huey, et al., Science 361 (2018) 682–685.  doi: 10.1126/science.aar2122

    65. [65]

      S. Li, R. Dong, V.E. Musteata, et al., Science 377 (2022) 1555–1561.  doi: 10.1126/science.abq0598

    66. [66]

      H. Xie, Z. Zhao, T. Liu, et al., Nature 612 (2022) 673–678.  doi: 10.1038/s41586-022-05379-5

    67. [67]

      S.P. Dharupaneedi, S.K. Nataraj, M. Nadagouda, et al., Sep. Purif. Technol. 210 (2019) 850–866.

    68. [68]

      H.B. Park, J. Kamcev, L.M. Robeson, et al., Science 356 (2017) eaab0530.

    69. [69]

      R.D. Miller, Science 169 (1970) 584–585.  doi: 10.1126/science.169.3945.584

    70. [70]

      G. Zhao, H. Gao, Z. Qu, et al., Nat. Commun. 14 (2023) 7624.  doi: 10.1021/acsnano.3c00074

    71. [71]

      S.N. Schiffres, S. Harish, S. Maruyama, et al., ACS Nano 7 (2013) 11183–11189.  doi: 10.1021/nn404935m

    72. [72]

      J. Wang, D. Jiang, M. Zhang, et al., J. Mater. Chem. A 11 (2023) 1419–1429.  doi: 10.1039/d2ta08176h

    73. [73]

      K. Kim, J. Min, M. Lee, et al., Nanoscale 14 (2022) 17157–17162.  doi: 10.1039/d2nr04479j

    74. [74]

      M. Xia, J. Gao, P. Xu, et al., Chem. Eng. J. 485 (2024) 150023.

    75. [75]

      A.Q.K. Nguyen, K. Kim, Y.Y. Ahn, et al., Sci. Total Environ. 865 (2023) 161104.

    76. [76]

      X.X. Wang, B.C. Yang, K.C. Zhou, et al., Curr. Appl. Phys. 15 (2015) 662–668.

    77. [77]

      K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13 (2012) 169–189.

    78. [78]

      M. Cheng, M. Li, Chem. Eur. J. 25 (2019) 13860–13864.  doi: 10.1002/chem.201902587

    79. [79]

      C. Suwanchawalit, A.J. Patil, R.K. Kumar, et al., J. Mater. Chem. 19 (2009) 8478–8483.  doi: 10.1039/b912698h

    80. [80]

      C. Chen, Y. Zhang, J. Zeng, et al., Appl. Surf. Sci. 424 (2017) 170–176.

    81. [81]

      P. Kumar Sahoo, B. Panigrahy, D. Thakur, et al., New J. Chem. 41 (2017) 7861–7869.

    82. [82]

      Z.Y. Sun, Y.Q. Yang, C.H. Fang, et al., Small 18 (2022) 2203422.

    83. [83]

      A. Ouyang, Q.M. Gong, J. Liang, Adv. Eng. Mater. 17 (2015) 460–466.  doi: 10.1002/adem.201400250

    84. [84]

      C.H. Tessmer, R.D. Vidic, L.J. Uranowski, Environ. Sci. Technol. 31 (1997) 1872–1878.

    85. [85]

      Y.B. Cheng, P. Xu, W. Zeng, et al., J. Environ. Chem. Eng. 5 (2017) 1957–1963.

    86. [86]

      J.J. Wu, X.Y. Qiu, S.X. Chen, J. Mater. Sci. 57 (2022) 1727–1737.  doi: 10.1007/s10853-021-06768-3

    87. [87]

      S. Tang, D.S. Xia, Y. Yao, et al., J. Colloid Interface Sci. 554 (2019) 682–691.

    88. [88]

      Y.Q. He, N.N. Zhang, X.D. Wang, Chin. Chem. Lett. 22 (2011) 859–862.

    89. [89]

      Q.S. Fu, L. Zhang, H.F. Zhang, et al., Environ. Res. 186 (2020) 109608.

    90. [90]

      L. Wen, X.D. Chen, C. Chen, et al., Arabian J. Chem. 13 (2020) 5669–5678.  doi: 10.1016/j.arabjc.2020.04.007

  • 加载中
    1. [1]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    2. [2]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    3. [3]

      Jing GuoJianzhong MaJunli LiuGuanjie HuangXiaoting ZhouFrancesco ParrinoRiccardo CeccatoLeonardo PalmisanoBoon-Junn NgLutfi Kurnianditia PutriHuaxing LiRongjie LiGang LiuYang WangNikolay KornienkoShan-Shan ZhuZhenwei ZhangXiaoming LiuNur Atika Nikma DahlanSiang-Piao ChaiJianmin Ma . Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030. Chinese Chemical Letters, 2025, 36(9): 110988-. doi: 10.1016/j.cclet.2025.110988

    4. [4]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    5. [5]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    6. [6]

      Ping WangChunmao ChenHongwei RenErhong Duan . A review of carbon dots in synthesis strategies, photoluminescence mechanisms, and applications in wastewater treatment. Chinese Chemical Letters, 2025, 36(9): 110725-. doi: 10.1016/j.cclet.2024.110725

    7. [7]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    8. [8]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    9. [9]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    10. [10]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    13. [13]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    14. [14]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    15. [15]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    16. [16]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    17. [17]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    18. [18]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    19. [19]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    20. [20]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

Metrics
  • PDF Downloads(0)
  • Abstract views(15)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return