Citation: Chao Chen, Wang Geng, Ke Li, Qiong Lei, Zhichao Jin, Xiuhai Gan. Pyridazine: A privileged scaffold in the development of 21st-century pesticides[J]. Chinese Chemical Letters, ;2025, 36(8): 110902. doi: 10.1016/j.cclet.2025.110902 shu

Pyridazine: A privileged scaffold in the development of 21st-century pesticides

    * Corresponding authors.
    E-mail addresses: zcjin@gzu.edu.cn (Z. Jin), gxh200719@163.com (X. Gan).
  • Received Date: 20 November 2024
    Revised Date: 18 January 2025
    Accepted Date: 23 January 2025
    Available Online: 27 January 2025

Figures(7)

  • Pyridazine has garnered increasing attention as a privileged scaffold and bioisosterism in drug discovery due to its unique structural characteristics. It can serve as a hydrogen bond acceptor when interacting with receptors due to its two adjacent nitrogen atoms. Upon conversion to pyridazinone, it exhibits the ability to act as both a hydrogen bond acceptor and donor, showcasing its versatility. This inherent flexibility has prompted extensive research exploring its bioactivity in pesticides and pharmaceuticals. In order to promote the development of pyridazine-based pesticides, this review provides a comprehensive summary of advancements for pyridazine-based pesticides on herbicidal (36.9%), insecticidal (26.2%), antifungal and antibacterial (24.6%), plant growth regulatory (10.8%), and antiviral activities (1.5%) from 2000 to 2024. It serves as an invaluable reference and source of inspiration for agricultural scientists conducting future research.
  • 加载中
    1. [1]

      Y. Abubakar, H. Tijjani, C. Egbuna, et al., Pesticides, history, and classification, in: C. Egbuna, B. Sawicka (Eds.), Natural Remedies for Pest, Disease and Weed Control, Academic Press, 2020, pp. 29–42.

    2. [2]

      B.E. Evans, K.E. Rittle, M.G. Bock, et al., J. Med. Chem. 31 (1988) 2235–2246.  doi: 10.1021/jm00120a002

    3. [3]

      M.E. Welsch, S.A. Snyder, B.R. Stockwell, Curr. Opin. Chem. Biol. 14 (2010) 347–361.

    4. [4]

      H.Y. Zhao, J. Dietrich, Expert Opin. Drug Discov. 10 (2015) 781–790.  doi: 10.1517/17460441.2015.1041496

    5. [5]

      P. Schneider, G. Schneider, Angew. Chem. Int. Ed. 56 (2017) 7971–7974.  doi: 10.1002/anie.201702816

    6. [6]

      S. Kang, H.K. Moon, Y.J. Yoon, H.J. Yoon, J. Org. Chem. 83 (2018) 1–11.

    7. [7]

      A. Smith, J. Chem. Soc. Trans. 57 (1890) 643–652.

    8. [8]

      K. Bevan, J.S. Davies, C.H. Hassall, R.B. Morton, D.A.S. Phillips, J. Chem. Soc. C (1971) 514–522.

    9. [9]

      R. Grote, Y.L. Chen, A. Zeeck, et al., J. Antibiot. 41 (1988) 595–601.  doi: 10.7164/antibiotics.41.595

    10. [10]

      B.U.W. Maes, Chapter 13 Pyridazines, Tetrahedron Organic Chemistry Series, Elsevier, 2007, pp. 541–585.

    11. [11]

      Z.Q. Liu, Q. Zhang, Y.L. Liu, et al., Bioorg. Med. Chem. 111 (2024) 117847.

    12. [12]

      Y.T. Han, J.W. Jung, N.J. Kim, Curr. Org. Chem. 21 (2017) 1265–1291.  doi: 10.2174/1385272821666170221150901

    13. [13]

      S. Dubey, P.A. Bhosle, Med. Chem. Res. 24 (2015) 3579–3598.  doi: 10.1007/s00044-015-1398-5

    14. [14]

      Y. Imamura, A. Noda, T. Imamura, et al., Life Sci. 74 (2003) 29–36.

    15. [15]

      S. Alghamdi, M. Asif, Eurasian Chem. Commun. 3 (2021) 435–442.

    16. [16]

      M.C. Costas-Lago, P. Besada, F. Rodríguez-Enríquez, et al., Euro. J. Med. Chem. 139 (2017) 1–11.

    17. [17]

      C.G. Wermuth, G. Schlewer, J.J. Bourguignon, et al., J. Med. Chem. 32 (1989) 528–537.  doi: 10.1021/jm00123a004

    18. [18]

      R.T. Lewis, W.P. Blackaby, T. Blackburn, et al., J. Med. Chem. 49 (2006) 2600–2610.  doi: 10.1021/jm051144x

    19. [19]

      X.Y. Sun, C. Hu, X.Q. Deng, et al., Euro. J. Med. Chem. 45 (2010) 4807–4812.

    20. [20]

      B. Bindu, S. Vijayalakshmi, A. Manikandan, Euro. J. Med. Chem. 187 (2020) 111912.

    21. [21]

      L.P. Guan, X. Sui, X.Q. Deng, Y.C. Quan, Z.S. Quan, Eur. J. Med. Chem. 45 (2010) 1746–1752.

    22. [22]

      S.A. Rizk, S.S. Abdelwahab, A.A. El-Badawy, J. Heterocycl. Chem. 56 (2019) 2347–2357.  doi: 10.1002/jhet.3622

    23. [23]

      A.H. Moustafa, H.A. El-Sayed, R.A. Abd El-Hady, A.Z. Haikal, M. El-Hashash, J. Heterocycl. Chem. 53 (2016) 789–799.  doi: 10.1002/jhet.2316

    24. [24]

      H.S. Ibrahim, W.M. Eldehna, H.A. Abdel-Aziz, M.M. Elaasser, M.M. Abdel-Aziz, Eur. J. Med. Chem. 85 (2014) 480–486.

    25. [25]

      M. Asif, A. Singh, A.A. Siddiqui, Med. Chem. Res. 21 (2012) 3336–3346.  doi: 10.1007/s00044-011-9835-6

    26. [26]

      M.C. Lucas, N. Bhagirath, E. Chiao, et al., J. Med. Chem. 57 (2014) 2683–2691.  doi: 10.1021/jm401982j

    27. [27]

      P. Brehova, E. Řezníčková, K. Skach, et al., J. Med. Chem. 66 (2023) 11133–11157.  doi: 10.1021/acs.jmedchem.3c00575

    28. [28]

      B.B. Mao, S.Y. Gao, Y.R. Weng, L.R. Zhang, L.H. Zhang, Euro. J. Med. Chem. 129 (2017) 135–150.

    29. [29]

      T.L. Chen, A.S. Patel, V. Jain, et al., J. Med. Chem. 64 (2021) 12469–12486.  doi: 10.1021/acs.jmedchem.0c01733

    30. [30]

      P. Břehová, E. Řezníčková, K. Škach, et al., J. Med. Chem. 66 (2023) 11133–11157.

    31. [31]

      T. Taniguchi, I. Yasumatsu, H. Inagaki, et al., ACS Med. Chem. Lett. 15 (2024) 1010–1016.  doi: 10.1021/acsmedchemlett.4c00030

    32. [32]

      C.G. Wermuth, Med. Chem. Commun. 2 (2011) 935–941.  doi: 10.1039/c1md00074h

    33. [33]

      A. Garrido, G. Vera, P.O. Delaye, C. Euro, J. Med. Chem. 226 (2021) 113867.

    34. [34]

      Z.X. He, Y.P. Gong, X. Zhang, L.Y. Ma, W. Zhao, Euro. J. Med. Chem. 209 (2021) 112946.

    35. [35]

      M. Jaballah, R. Serya, K. Abouzid, Drug Res. 67 (2017) 138–148.

    36. [36]

      N.A. Meanwell, Med. Chem. Res. 32 (2023) 1853–1921.  doi: 10.1007/s00044-023-03035-9

    37. [37]

      D.G. Brown, H.J. Wobst, J. Med. Chem. 64 (2021) 2312–2338.  doi: 10.1021/acs.jmedchem.0c01516

    38. [38]

      Olaparib, Cancer Discov. 5 (2015) 218.

    39. [39]

      A.C. Flick, H.X. Ding, C.A. Leverett, et al., J. Med. Chem. 61 (2018) 7004–7031.  doi: 10.1021/acs.jmedchem.8b00260

    40. [40]

      A. Markham, Drugs 79 (2019) 675–679.  doi: 10.1007/s40265-019-01105-0

    41. [41]

      F. Barra, M. Seca, L. Della Corte, P. Giampaolino, S. Ferrero, Drugs Today 55 (2019) 503–512.  doi: 10.1358/dot.2019.55.8.3020179

    42. [42]

      A.C. Flick, C.A. Leverett, H.X. Ding, et al., J. Med. Chem. 65 (2022) 9607– 9661.  doi: 10.1021/acs.jmedchem.2c00710

    43. [43]

      H. Ratni, R.S. Scalco, A.H. Stephan, ACS Med. Chem. Lett. 12 (2021) 874–877.  doi: 10.1021/acsmedchemlett.0c00659

    44. [44]

      A. Markham, Drugs 80 (2020) 829–833.  doi: 10.1007/s40265-020-01317-9

    45. [45]

      A. Lee, Drugs 81 (2021) 1597–1597.  doi: 10.1007/s40265-021-01585-z

    46. [46]

      S.P. France, E.A. Lindsey, E.L. McInturff, et al., J. Med. Chem. 67 (2024) 4376–4418.  doi: 10.1021/acs.jmedchem.3c02374

    47. [47]

      S.M. Hoy, Drugs 82 (2022) 1671–1679.  doi: 10.1007/s40265-022-01796-y

    48. [48]

      D.S. Treitler, M.C. Soumeillant, E.M. Simmons, et al., Org. Process Res. Dev. 26 (2022) 1202–1222.  doi: 10.1021/acs.oprd.1c00468

    49. [49]

      S.J. Keam, Drugs 84 (2024) 729–735.  doi: 10.1007/s40265-024-02045-0

    50. [50]

      S. Braner, C EN Glob. Enterp. 102 (2024) 13.

    51. [51]

      M. Asif, M. Allahyani, M.M. Almehmadi, A.A. Alsaiari, Curr. Org. Chem. 27 (2023) 814–820.  doi: 10.2174/1385272827666230809094221

    52. [52]

      C. Lamberth, J. Heterocycl. Chem. 54 (2017) 2974–2984.  doi: 10.1002/jhet.2945

    53. [53]

      J.H. Westwood, R. Charudattan, S.O. Duke, et al., Weed Sci. 66 (2018) 275–285.  doi: 10.1017/wsc.2017.78

    54. [54]

      B.S. Chauhan, Front. Agron. 1 (2020) 3.

    55. [55]

      T.M. Stevenson, B.A. Crouse, T.V. Thieu, et al., J. Heterocycl. Chem. 42 (2005) 427–435.  doi: 10.1002/jhet.5570420310

    56. [56]

      H. Xu, X.M. Zou, Y.Q. Zhu, et al., Pest Manag. Sci. 62 (2006) 522–530.  doi: 10.1002/ps.1195

    57. [57]

      H. Xu, X.H. Hu, Y.Q. Zhu, et al., Sci. China Chem. 53 (2010) 157–166.  doi: 10.1007/s11426-010-0014-2

    58. [58]

      H. Xu, X.H. Hu, X.M. Zou, et al., J. Agric. Food Chem. 56 (2008) 6567–6572.  doi: 10.1021/jf800900h

    59. [59]

      B. Laber, G. Usunow, E. Wiecko, et al., Pestic. Biochem. Physiol. 63 (1999) 173–184.

    60. [60]

      H. Xu, Y.Q. Zhu, X.M. Zou, et al., Pest Manag. Sci. 68 (2012) 276–284.  doi: 10.1002/ps.2257

    61. [61]

      X.M. Zou, C.R. Fu, X. Wang, et al., J. Heterocycl. Chem. 54 (2017) 670–676.  doi: 10.1002/jhet.2640

    62. [62]

      L.J. Yang, D.W. Wang, D.J. Ma, et al., Molecules 26 (2021) 6979.  doi: 10.3390/molecules26226979

    63. [63]

      C. Chen, Q. Lei, W. Geng, D.P. Wang, X.H. Gan, J. Agric. Food Chem. 72 (2024) 12425–12433.  doi: 10.1021/acs.jafc.3c09350

    64. [64]

      C. Zagar, R. Liebl, G. Theodoridis, M. Witschel, Protoporphyrinogen Ⅸ oxidase inhibitors, in: P. Jeschke, M. Witschel, W. Krämer, U. Schirmer (Eds.), Modern Crop Protection Compounds, 1st ed., Wiley, 2019, pp. 173–211.

    65. [65]

      H.Z. Yang, X. Wang, F.Z. Hu, X.F. Yang, Chem. J. Chin. Univ. 23 (2002) 2261–2263.

    66. [66]

      F.Z. Hu, Z.G.F. Zhang, Y.Q. Zhu, et al., Chin. J. Org. Chem. 27 (2007) 758–762.

    67. [67]

      F.Z. Hu, G.F. Zhang, B. Liu, et al., J. Heterocycl. Chem. 46 (2009) 584–590.  doi: 10.1002/jhet.120

    68. [68]

      R.B. Zhang, S.Y. Yu, L. Liang, et al., J. Agric. Food Chem. 68 (2020) 13672–13684.  doi: 10.1021/acs.jafc.0c05955

    69. [69]

      B.F. Zheng, Y. Zuo, W.Y. Yang, et al., J. Agric. Food Chem. 72 (2024) 10772–10780.  doi: 10.1021/acs.jafc.3c09157

    70. [70]

      D.M. Barber, J. Agric. Food Chem. 70 (2022) 11075–11090.  doi: 10.1021/acs.jafc.1c07910

    71. [71]

      M. Shino, T. Hamada, Y. Shigematsu, et al., Chapter 30-Discovery and mode of action of cyclopyrimorate: a new paddy rice herbicide, in: P. Maienfisch, S. Mangelinckx (Eds.), Recent Highlights in the Discovery and Optimization of Crop Protection Products, Academic Press, 2021, pp. 451–457.

    72. [72]

      M. Shino, T. Hamada, Y. Shigematsu, K. Hirase, S. Banba, J. Pestic. Sci. 43 (2018) 233–239.  doi: 10.1584/jpestics.d18-008

    73. [73]

      M. Shino, T. Hamada, Y. Shigematsu, S. Banba, Pest Manag. Sci. 76 (2020) 3389–3394.  doi: 10.1002/ps.5698

    74. [74]

      Y.X. Liu, D.G. Wei, Y.R. Zhu, et al., J. Agric. Food Chem. 56 (2008) 204–212.  doi: 10.1021/jf072851x

    75. [75]

      H.J. Kim, A.B. Bo, J.D. Kim, et al., J. Agric. Food Chem. 68 (2020) 15373–15380.  doi: 10.1021/acs.jafc.0c01974

    76. [76]

      K.C. Salamanez, A.M. Baltazar, E.B. Rodriguez, et al., Philipp. J. Crop Sci. 40 (2015) 23–32.

    77. [77]

      H.J. Ikeda, S. Ito, Y. Okada, et al., Sumitomo Kagaku (R&D Report) 2011-Ⅱ. (2025).

    78. [78]

      Y.X. Li, Y.P. Luo, Z. Xi, et al., J. Agric. Food Chem. 54 (2006) 9135–9139.  doi: 10.1021/jf061976j

    79. [79]

      M. Muehlebach, M. Boeger, F. Cederbaum, et al., Bioorg. Med. Chem. 17 (2009) 4241–4256.

    80. [80]

      T.C. Sparks, Pestic. Biochem. Physiol. 107 (2013) 8–17.

    81. [81]

      W. Shi, X.H. Qian, R. Zhang, G.H. Song, J. Agric. Food Chem. 49 (2001) 124–130.

    82. [82]

      S. Cao, X.H. Qian, G.H. Song, B. Chai, Z.S. Jiang, J. Agric. Food Chem. 51 (2003) 152–155.

    83. [83]

      S. Cao, N. Wei, C.M. Zhao, et al., J. Agric. Food Chem. 53 (2005) 3120–3125.  doi: 10.1021/jf047985e

    84. [84]

      Q.C. Huang, X.H. Qian, G.H. Song, S. Cao, Pest Manag. Sci. 59 (2003) 933–939.

    85. [85]

      M.M. Dang, M.H. Liu, L. Huang, et al., J. Heterocycl. Chem. 57 (2020) 4088–4098.  doi: 10.1002/jhet.4118

    86. [86]

      S. Cao, D.L. Lu, C.M. Zhao, et al., Monatsh. Chem. 137 (2006) 779–784.  doi: 10.1007/s00706-005-0476-7

    87. [87]

      R.F. Sun, Y.L. Zhang, F.C. Bi, Q.M. Wang, J. Agric. Food Chem. 57 (2009) 6356–6361.  doi: 10.1021/jf900882c

    88. [88]

      A.M. Buysse, M.C. Yap, R. Hunter, J. Babcock, X. Huang, Pest Manag. Sci. 73 (2017) 782–795.  doi: 10.1002/ps.4465

    89. [89]

      K. Narusuye, T. Nakao, R. Abe, et al., Insect Mol. Biol. 16 (2007) 723–733.  doi: 10.1111/j.1365-2583.2007.00766.x

    90. [90]

      M.M. Rahman, Y. Akiyoshi, S. Furutani, et al., Bioorg. Med. Chem. 20 (2012) 5957–5964.

    91. [91]

      M.M. Rahman, G.Y. Liu, K. Furuta, F. Ozoe, Y. Ozoe, J. Pestic. Sci. 39 (2014) 133–143.

    92. [92]

      G.Y. Liu, Y. Wu, Y. Gao, X.L. Ju, et al., J. Agric. Food Chem. 68 (2020) 4760–4768.  doi: 10.1021/acs.jafc.9b08189

    93. [93]

      G.Y. Liu, C.W. Zhou, Z.S. Zhang, et al., Pest Manag. Sci. 78 (2022) 2872–2882.  doi: 10.1002/ps.6911

    94. [94]

      M.J. Chen, Z. Li, X.S. Shao, P. Maienfisch, J. Agric. Food Chem. 70 (2022) 11109–11122.  doi: 10.1021/acs.jafc.2c00636

    95. [95]

      J. Shang, W.Y. Dong, H.B. Fang, et al., Pestic. Biochem. Physiol. 197 (2023) 105694.

    96. [96]

      C. Spalthoff, V.L. Salgado, N. Balu, et al., Pest Manag. Sci. 79 (2023) 1635–1649.  doi: 10.1002/ps.7352

    97. [97]

      S.K. Ramadan, D.R. Abdel Haleem, H.S.M. Abd-Rabboh, et al., RSC Adv. 12 (2022) 13628–13638.  doi: 10.1039/d2ra02388a

    98. [98]

      R.N. Strange, P.R. Scott, Annu. Rev. Phytopathol. 43 (2005) 83–116.  doi: 10.1146/annurev.phyto.43.113004.133839

    99. [99]

      M.C. Fisher, D.A. Henk, C.J. Briggs, et al., Nature 484 (2012) 186–194.  doi: 10.1038/nature10947

    100. [100]

      X.J. Zou, G.Y. Jin, Chin. Chem. Lett. 12 (2001) 419–420.

    101. [101]

      X.J. Zou, G.Y. Jin, Z.X. Zhang, J. Agric. Food Chem. 50 (2002) 1451–1454.

    102. [102]

      X.J. Zou, L.H. Lai, G.Y. Jin, Z.X. Zhang, J. Agric. Food Chem. 50 (2002) 3757–3760.

    103. [103]

      J. Wu, B.A. Song, H.J. Chen, P. Bhadury, D.Y. Hu, Molecules 14 (2009) 3676–3687.  doi: 10.3390/molecules14093676

    104. [104]

      H. Morishita, A. Manabe, JP Patent 4747680, 2005.

    105. [105]

      Y. Matsuzaki, M. Kurahashi, S. Watanabe, et al., Pest Manag. Sci. (2024), doi: 10.1002/ps.8239.  doi: 10.1002/ps.8239

    106. [106]

      Y. Matsuzaki, S. Watanabe, T. Harada, F. Iwahashi, Pest Manag. Sci. 76 (2020) 1393–1401.  doi: 10.1002/ps.5652

    107. [107]

      A. Manabe, H. Ikegami, H. Morishita, Y. Matsuzaki, Bioorg. Med. Chem. 88 (2023) 117332.

    108. [108]

      H. Morishita, A. Manabe, PCT, WO 200121104, 2005.

    109. [109]

      C. Lamberth, S. Trah, S. Wendeborn, et al., Bioorg. Med. Chem. 20 (2012) 2803–2810.

    110. [110]

      F. Miao, X.J. Yang, L. Zhou, et al., Nat. Prod. Res. 25 (2011) 863–875.  doi: 10.1080/14786419.2010.482055

    111. [111]

      X.J. Yang, F. Miao, Y. Yao, et al., Molecules 17 (2012) 13026–13035.  doi: 10.3390/molecules171113026

    112. [112]

      Z.M. Cui, B.H. Zhou, C. Fu, et al., J. Agric. Food Chem. 68 (2020) 15418–15427.  doi: 10.1021/acs.jafc.0c06507

    113. [113]

      E.S. Moghadam, F. Bonyasi, B. Bayati, M.S. Moghadam, M. Amini, J. Agric. Food Chem. 72 (2024) 15427–15448.

    114. [114]

      Y.N. Hao, M. Yu, K.H. Wang, et al., Pest Manag. Sci. 78 (2022) 982–990.  doi: 10.1002/ps.6709

    115. [115]

      Z. Rozmer, P. Perjési, Phytochem. Rev. 15 (2016) 87–120.  doi: 10.1007/s11101-014-9387-8

    116. [116]

      S. Chen, M.H. Zhang, S. Feng, et al., Arab. J. Chem. 16 (2023) 104852.  doi: 10.1016/j.arabjc.2023.104852

    117. [117]

      M.Y. Hamed, A.F. Aly, N.H. Abdullah, M.F. Ismail, Polycycl. Aromat. Compd. 43 (2023) 2356–2375.  doi: 10.1080/10406638.2022.2044865

    118. [118]

      S.A. Rizk, A.Y. Alzahrani, A.M. Abdo, Polycycl. Aromat. Compd. 44 (2024) 2991–3008.  doi: 10.1080/10406638.2023.2227316

    119. [119]

      L.L. Fan, Z.F. Luo, Y. Li, et al., Bioorg. Med. Chem. Lett. 30 (2020) 127139.

    120. [120]

      S.G. Tiratsuyan, A.A. Hovhannisyan, A.V. Karapetyan, T.A. Gomktsyan, A.P. Yengoyan, Russ. J. Plant Physiol. 63 (2016) 656–662.

    121. [121]

      R.S. Shainova, T.A. Gomktsyan, A.V. Karapetyan, A.P. Yengoyan, J. Chem. Res. 41 (2017) 205–209.

    122. [122]

      R.S. Shainova, T.A. Gomktsyan, A.V. Karapetyan, A.P. Yengoyan, J. Chem. Res. 43 (2019) 352–358.  doi: 10.1177/1747519819866402

    123. [123]

      T.A. Gomktsyan, R.S. Shainova, A.V. Karapetyan, A.P. Yengoyan, Russ. J. Gen. Chem. 91 (2021) 2019–2024.  doi: 10.1134/s1070363221100145

    124. [124]

      T.A. Gomktsyan, R.S. Shainova, A.V. Karapetyan, et al., Russ. J. Gen. Chem. 92 (2022) 2492–2499.  doi: 10.1134/s1070363222110354

    125. [125]

      A.P. Yengoyan, R.S. Shainova, T.A. Gomktsyan, A.V. Karapetyan, J. Chem. Res. 42 (2018) 535–539.  doi: 10.3184/174751918x15389922302823

    126. [126]

      R.S. Shainova, T.A. Gomktsyan, A.V. Karapetyan, A.P. Yengoyan, J. Chem. Res. 44 (2019) 271–276.

    127. [127]

      J.M. Jin, T.W. Shen, L.Z. Shu, et al., J. Agric. Food Chem. 71 (2023) 1291–1309.  doi: 10.1021/acs.jafc.2c07315

    128. [128]

      L. Xing, Y.S. An, Y. Qin, et al., New J. Chem. 48 (2024) 117–130.  doi: 10.1039/d3nj04902g

    129. [129]

      C.L. Cantrell, F.E. Dayan, S.O. Duke, J. Nat. Prod. 75 (2012) 1231–1242.  doi: 10.1021/np300024u

    130. [130]

      K. Wang, L.H. Guo, Y.S. Zou, Y. Li, J.B. Wu, J. Antibiot. 60 (2007) 325–327.  doi: 10.1038/ja.2007.42

    131. [131]

      C.F. Zhang, Q. Wang, M. Zhang, J. Asian Nat. Prod. Res. 11 (2009) 339–344.  doi: 10.1080/10286020902771403

    132. [132]

      Y.M. Liu, J.S. Yang, Q.H. Liu, Chem. Pharm. Bull. 52 (2004) 454–455.

    133. [133]

      L.M. Blair, J. Sperry, J. Nat. Prod. 76 (2013) 794–812.  doi: 10.1021/np400124n

    134. [134]

      Z. Ali, D. Ferreira, P. Carvalho, M.A. Avery, I.A. Khan, J. Nat. Prod. 71 (2008) 1111–1112.  doi: 10.1021/np800172x

    135. [135]

      A.M. Elissawy, S.S. Ebada, M.L. Ashour, Phytochem. Lett. 29 (2019) 1–5.

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    3. [3]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    4. [4]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    5. [5]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    6. [6]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    7. [7]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    8. [8]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    9. [9]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    10. [10]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    11. [11]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    12. [12]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    13. [13]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    14. [14]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    17. [17]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    18. [18]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    19. [19]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    20. [20]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return