Citation: Yaojun Li, Yun Li, Shenglong Liao, Yang Li, Shouchun Yin. Revolutionizing cancer therapies with organic photovoltaic non-fullerene acceptors: A deep dive into molecular engineering for advanced phototheranostics[J]. Chinese Chemical Letters, ;2025, 36(8): 110832. doi: 10.1016/j.cclet.2025.110832 shu

Revolutionizing cancer therapies with organic photovoltaic non-fullerene acceptors: A deep dive into molecular engineering for advanced phototheranostics

    * Corresponding author.
    E-mail address: yinsc@hznu.edu.cn (S. Yin).
  • Received Date: 15 October 2024
    Revised Date: 19 December 2024
    Accepted Date: 6 January 2025
    Available Online: 10 January 2025

Figures(27)

  • The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics, a field that combines the precision of imaging with the selectivity of light-activated treatments. Due to their pronounced near-infrared (NIR) absorption, tunable molecular structures, and commendable stability, organic photovoltaic non-fullerene acceptors (NFAs) represent a promising frontier in cancer management. Despite the great potential of NFAs in phototheranostics, there is currently a lack of systematic reviews in this field. This review provides a meticulous examination of the current state of NFAs in the field of phototheranostics, highlighting the strategic approaches to spectral red-shifting that enhance tissue penetration and therapeutic efficacy. It dissects the link between molecular architecture and performance across key therapeutic and diagnostic modalities, including photothermal therapy (PTT), photodynamic therapy (PDT), and fluorescence imaging (FLI). In addition, the review presents a concise analysis of the challenges and milestones in the clinical translation of NFAs, offering insights into the innovations required to overcome existing barriers.
  • 加载中
    1. [1]

      R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, CA Cancer J. Clin. 73 (2023) 17–48.  doi: 10.3322/caac.21763

    2. [2]

      R.L. Siegel, A.N. Giaquinto, A. Jemal, CA Cancer J. Clin. 74 (2024) 12–49.  doi: 10.3322/caac.21820

    3. [3]

      H. Stower, Nat. Med. 26 (2020) 1804–1805.  doi: 10.1038/s41591-020-01151-2

    4. [4]

      M. Ghasemlou, N. Pn, K. Alexander, et al., Adv. Mater. 36 (2024) e2312474.

    5. [5]

      A. Pulumati, A. Pulumati, B.S. Dwarakanath, Cancer Rep. 6 (2023) e1764.

    6. [6]

      J.S.J. Britto, X. Guan, T.K.A. Tran, et al., Small Sci. 4 (2024) 2300221.

    7. [7]

      Y. Dai, H. Zhao, K. He, et al., Small 17 (2021) e2102527.

    8. [8]

      L. Wang, N. Li, W. Wang, et al., ACS Nano 18 (2024) 4683–4703.  doi: 10.1021/acsnano.3c12316

    9. [9]

      S. Wang, W.X. Ren, J.T. Hou, et al., Chem. Soc. Rev. 50 (2021) 8887–8902.  doi: 10.1039/d1cs00083g

    10. [10]

      B. Nasseri, E. Alizadeh, F. Bani, et al., Appl. Phys. Rev. 9 (2022) 011317–011320.

    11. [11]

      V.N. Nguyen, Z. Zhao, B.Z. Tang, J. Yoon, Chem. Soc. Rev. 51 (2022) 3324–3340.  doi: 10.1039/d1cs00647a

    12. [12]

      V.V. Brus, J. Lee, B.R. Luginbuhl, et al., Adv. Mater. 31 (2019) e1900904.

    13. [13]

      J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Rev. Chem. 6 (2022) 614–634.

    14. [14]

      C. Zhu, J. Yuan, F. Cai, et al., Energy Environ. 13 (2020) 2459–2466.  doi: 10.1039/d0ee00862a

    15. [15]

      Y. Cui, H. Yao, J. Zhang, et al., Adv. Mater. 32 (2020) e1908205.

    16. [16]

      A. Armin, W. Li, O.J. Sandberg, et al., Adv. Energy Mater. 11 (2021) 20003570.

    17. [17]

      Y. Cai, Z. Wei, C. Song, et al., Chem. Commun. 55 (2019) 8967–8970.  doi: 10.1039/c9cc04195h

    18. [18]

      G. Zhang, W. Wang, H. Zou, et al., J. Mater. Chem. B 9 (2021) 5318–5328.  doi: 10.1039/d1tb00659b

    19. [19]

      C. Li, G. Jiang, J. Yu, et al., Adv. Mater. 35 (2023) e2208229.

    20. [20]

      Q. Wang, J. Xu, R. Geng, et al., Biomaterials 231 (2020) 119671.

    21. [21]

      H. Chen, S. Yan, L. Zhang, et al., Sensors Actuators B: Chem. 405 (2024) 135346.

    22. [22]

      J. Xia, H. Quan, Y. Huang, et al., ACS Macro Lett. 13 (2024) 489–494.  doi: 10.1021/acsmacrolett.4c00031

    23. [23]

      K. Yang, Z. Zhang, Y. Gan, et al., J. Mater. Chem. B 10 (2022) 7622–7627.  doi: 10.1039/d2tb00984f

    24. [24]

      Y. Yuan, Z. Feng, S. Li, et al., Adv. Mater. 34 (2022) e2201263.

    25. [25]

      W. Fan, Y. He, P. Hu, et al., J. Colloid Interface Sci. 670 (2024) 762–773.

    26. [26]

      D. Li, Y. Li, Q. Wu, et al., Small 17 (2021) e2102044.

    27. [27]

      X. Li, F. Fang, B. Sun, et al., Nanoscale Horiz. 6 (2021) 177–185.  doi: 10.1039/d0nh00672f

    28. [28]

      H. Yuan, Z. Li, Q. Zhao, et al., Adv. Funct. Mater. 33 (2023) 2213209.

    29. [29]

      X. Li, L. Liu, S. Li, et al., ACS Nano 13 (2019) 12901–12911.  doi: 10.1021/acsnano.9b05383

    30. [30]

      B. Lu, H. Quan, Z. Zhang, et al., Nano Lett. 23 (2023) 2831–2838.  doi: 10.1021/acs.nanolett.3c00119

    31. [31]

      B. Lu, Y. Huang, H. Quan, et al., ACS Macro Lett. 12 (2023) 1365–1371.  doi: 10.1021/acsmacrolett.3c00454

    32. [32]

      B. Lu, J. Xia, H. Quan, et al., Small 20 (2023) e2307664.

    33. [33]

      L. Li, C. Shao, T. Liu, et al., Adv. Mater. 32 (2020) e2003471.

    34. [34]

      B. Lu, Z. Zhang, Y. Ji, et al., Sci. China Chem. 65 (2022) 1134–1141.  doi: 10.1007/s11426-022-1232-9

    35. [35]

      B. Lu, Z. Zhang, Y. Huang, et al., Chem. Commun. 58 (2022) 10353–10356.  doi: 10.1039/d2cc03248a

    36. [36]

      B. Li, Y. Gan, K. Yang, et al., Sci. Chin. Mater. 66 (2022) 385–394.

    37. [37]

      Z. He, L. Zhao, Q. Zhang, et al., Adv. Funct. Mater. 30 (2020) 1910301.

    38. [38]

      X.F. Zhu, C.C. Liu, Z.B. Hu, et al., Nano Res. 13 (2020) 2570–2575.  doi: 10.1007/s12274-020-2901-y

    39. [39]

      Y. Zhu, H. Lai, Y. Gu, et al., Adv. Sci. 11 (2024) e2307569.

    40. [40]

      B. Lu, Z. Zhang, D. Jin, et al., Chem. Commun. 57 (2021) 12020–12023.  doi: 10.1039/d1cc04629b

    41. [41]

      Y. Cai, C. Tang, Z. Wei, et al., ACS Appl. Bio Mater. 4 (2021) 1942–1949.  doi: 10.1021/acsabm.0c01576

    42. [42]

      M. Li, Z. Lu, J. Zhang, et al., Adv. Mater. 35 (2023) e2209647.

    43. [43]

      C. Song, J. Ran, Z. Wei, et al., ACS Appl. Mater. Interfaces 13 (2021) 3547–3558.  doi: 10.1021/acsami.0c18841

    44. [44]

      H. Xiao, Y. Wang, J. Chen, et al., Adv. Healthc. Mater. 13 (2024) e2303183.

    45. [45]

      Y. Zhu, H. Lai, H. Guo, et al., Angew. Chem. Int. Ed. 61 (2022) e202117433.

    46. [46]

      Z. Liu, J. Wen, G. Zhou, et al., Adv. Ther. 5 (2022) 2200168.

    47. [47]

      S. Jia, Z. Li, J. Shao, et al., ACS Appl. Polym. Mater. 4 (2022) 5275.  doi: 10.1021/acsapm.2c00699

    48. [48]

      Y. Zhao, Y. Cui, S. Xie, et al., Biomater. Sci. 12 (2024) 4386–4392.  doi: 10.1039/d4bm00605d

    49. [49]

      K. Yang, B. Yu, W. Liu, et al., Chin. Chem. Lett. 34 (2023) 107889–107894.

    50. [50]

      Y.J. Li, J.T. Ye, Y. Li, et al., Polym. Chem. 14 (2023) 3008–3017.  doi: 10.1039/d3py00461a

    51. [51]

      Y. Gu, H. Lai, Z.Y. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202303476.

    52. [52]

      K. Yang, F. Long, W. Liu, et al., ACS Appl. Mater. Interfaces 14 (2022) 18043–18052.  doi: 10.1021/acsami.1c22444

    53. [53]

      B. Yin, Q. Qin, Z. Li, et al., Nano Today 45 (2022) 101550.

    54. [54]

      G. Niu, X. Bi, Y. Kang, et al., Adv. Mater. 36 (2024) 2407199.

    55. [55]

      C. Xu, K. Pu, Chem. Soc. Rev. 50 (2021) 1111–1137.  doi: 10.1039/d0cs00664e

    56. [56]

      Y. Lu, M. Li, Adv. Funct. Mater. 34 (2024) 2312753.

    57. [57]

      Y. Li, M. Jiang, M. Yan, et al., Coord. Chem. Rev. 506 (2024) 215718–215737.

    58. [58]

      P. Cheng, Y. Yang, Acc. Chem. Res. 53 (2020) 1218–1228.  doi: 10.1021/acs.accounts.0c00157

    59. [59]

      D. Meng, R. Zheng, Y. Zhao, et al., Adv. Mater. 34 (2022) e2107330.

    60. [60]

      X. Wan, C. Li, M. Zhang, Y. Chen, Chem. Soc. Rev. 49 (2020) 2828–2842.  doi: 10.1039/d0cs00084a

    61. [61]

      Y. Che, M.R. Niazi, R. Izquierdo, D.F. Perepichka, Angew. Chem. Int. Ed. 60 (2021) 24833–24837.  doi: 10.1002/anie.202109357

    62. [62]

      Y. Lin, J. Wang, Z.G. Zhang, et al., Adv. Mater. 27 (2015) 1170–1174.  doi: 10.1002/adma.201404317

    63. [63]

      X.D. Zhang, H. Wang, A.L. Antaris, et al., Adv. Mater. 28 (2016) 6872–6879.  doi: 10.1002/adma.201600706

    64. [64]

      Y. Su, B. Yu, S. Wang, H. Cong, Y. Shen, Biomaterials 271 (2021) 120717.

    65. [65]

      Y. Maruoka, T. Nagaya, K. Sato, et al., Mol. Pharm. 15 (2018) 3634–3641.  doi: 10.1021/acs.molpharmaceut.8b00002

    66. [66]

      X. Yin, Y. Cheng, Y. Feng, et al., Adv. Drug Del. Rev. 189 (2022) 114483.

    67. [67]

      J. Ma, X. Yang, Y. Sun, J. Yang, Sci. Rep. 9 (2019) 10987.

    68. [68]

      Y.Y. Zhao, H. Kim, V.N. Nguyen, et al., Coord. Chem. Rev. 501 (2024) 215560–215573.

    69. [69]

      S. Liu, X. Zhou, H. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 5359–5368.  doi: 10.1021/jacs.8b13889

    70. [70]

      Z. Zhao, C. Chen, W. Wu, et al., Nat. Commun. 10 (2019) 768–778.

    71. [71]

      X.W. Liu, W. Zhao, Y. Wu, et al., Nat. Commun. 13 (2022) 3887–3894.

    72. [72]

      S. Sasaki, G.P.C. Drummen, G.I. Konishi, J. Mater. Chem. C 4 (2016) 2731–2743.

    73. [73]

      Q. Yang, Z. Hu, S. Zhu, et al., J. Am. Chem. Soc. 140 (2018) 1715–1724.  doi: 10.1021/jacs.7b10334

    74. [74]

      D. Liese, G. Haberhauer, Isr. J. Chem. 58 (2018) 813–826.  doi: 10.1002/ijch.201800032

    75. [75]

      Z.Z. Zou, H.C. Chang, H.L. Li, S.M. Wang, Apoptosis 22 (2017) 1321–1335.  doi: 10.1007/s10495-017-1424-9

    76. [76]

      E. Pang, S.J. Zhao, B.H. Wang, et al., Coord. Chem. Rev. 472 (2022) 214780–214795.

    77. [77]

      Y. Cai, W. Si, W. Huang, P. Chen, J. Shao, et al., Small 14 (2018) e1704247.

    78. [78]

      X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem. Int. Ed. 57 (2018) 11522–11531.  doi: 10.1002/anie.201805138

    79. [79]

      S. Liu, H. Zhang, Y. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 15189–15193.  doi: 10.1002/anie.201810326

    80. [80]

      X. Wang, Y. Song, G. Pan, et al., Chem. Sci. 11 (2020) 10921–10927.  doi: 10.1039/d0sc03128c

    81. [81]

      L. Huang, D. Qing, S. Zhao, et al., Chem. Eng. J. 430 (2022) 132638–132642.

    82. [82]

      Y. Yu, S. Wu, L. Zhang, et al., Biomaterials 280 (2022) 121255.

    83. [83]

      Z. Zhuang, J. Li, P. Shen, Z. Zhao, B.Z. Tang, Aggregate 5 (2024) e540.

    84. [84]

      A. Huang, L. Su, Acc. Mater. Res. 4 (2023) 729–732.  doi: 10.1021/accountsmr.3c00098

    85. [85]

      Z. Zhao, S. Lei, M. Zeng, M. Huo, Aggregate 5 (2023) e418.

    86. [86]

      S.A. Chen, T.H. Jen, H.H. Lu, J. Chin. Chem. Soc. 57 (2013) 439–458.  doi: 10.1007/978-1-4614-3320-0_27

    87. [87]

      P. Shen, H. Liu, Z. Zhuang, et al., Adv. Sci. 9 (2022) 2200374.

    88. [88]

      Y. Tian, D. Yin, L. Yan, WIREs Nanomed. Nanobiotechnol. 15 (2023) e1831.

    89. [89]

      G. Han, T. Hu, Y. Yi, Adv. Mater. 32 (2020) 2000975.

    90. [90]

      S. Song, Y. Zhao, M. Kang, et al., Adv. Funct. Mater. 31 (2021) 2107545.

    91. [91]

      Y. Jin, Q.C. Peng, S. Li, et al., Natl. Sci. Rev. 9 (2022) nwab216.

    92. [92]

      J. Xia, S. Xie, Y. Huang, X.X. Wu, B. Lu, Chem. Commun. 60 (2024) 8526– 8536.  doi: 10.1039/d4cc02596b

    93. [93]

      Y. Wan, L.H. Fu, C. Li, J. Lin, P. Huang, Adv. Mater. 33 (2021) e2103978.

    94. [94]

      L. Huang, S. Zhao, J. Wu, et al., Coord. Chem. Rev. 438 (2021) 213888–213908.

    95. [95]

      B. Lu, L. Wang, H. Tang, D. Cao, J. Mater. Chem. B 11 (2023) 4600–4618.  doi: 10.1039/d3tb00545c

    96. [96]

      K.X. Teng, W.K. Chen, L.Y. Niu, et al., Angew. Chem. Int. Ed. 60 (2021) 19912–19920.  doi: 10.1002/anie.202106748

    97. [97]

      K.X. Teng, L.Y. Niu, Q.Z. Yang, J. Am. Chem. Soc. 145 (2023) 4081–4087.  doi: 10.1021/jacs.2c11868

    98. [98]

      X. Hu, Z. Fang, F. Sun, et al., Angew. Chem. Int. Ed. 63 (2024) e202401036.

    99. [99]

      Z. Hu, C. Fang, B. Li, et al., Nat. Biomed. Eng. 4 (2020) 259–271.

    100. [100]

      Q. Ma, X. Sun, W. Wang, et al., Chin. Chem. Lett. 33 (2022) 1681–1692.

    101. [101]

      W. Zhang, X. Du, Y. Ma, et al., Adv. Funct. Mater. 34 (2023) 2308591.

    102. [102]

      Z. Wang, M. Zhang, S. Chi, et al., Adv. Healthc. Mater. 11 (2022) e2200521.

    103. [103]

      F. Zhao, X. Zhang, F. Bai, et al., Adv. Mater. 35 (2023) e2208097.

    104. [104]

      H. Ren, J. Li, J.F. Lovell, Y. Zhang, Coord. Chem. Rev. 503 (2024) 215634–215653.

    105. [105]

      Y. Dai, Z. Sun, H. Zhao, et al., Biomaterials 275 (2021) 120935.

    106. [106]

      S. Song, Y. Zhao, M. Kang, et al., Adv. Mater. 36 (2024) e2309748.

    107. [107]

      N. Liang, D. Meng, Z. Wang, Acc. Chem. Res. 54 (2021) 961–975.  doi: 10.1021/acs.accounts.0c00677

    108. [108]

      X. Zhao, F. Zhang, Z. Lei, Chem. Sci. 13 (2022) 11280–11293.  doi: 10.1039/d2sc03136a

    109. [109]

      H. Li, Q. Li, Y. Gu, et al., Aggregate 5 (2024) e528.

    110. [110]

      S. Yang, G.L. Wu, N. Li, et al., J. Nanobiotechnol. 20 (2022) 475.

    111. [111]

      S. Yang, B. Sun, F. Liu, et al., Small 19 (2023) e2207995.

    112. [112]

      J. Ye, Y. Yu, Y. Li, et al., ACS Appl. Mater. Interfaces 16 (2024) 34607–34619.  doi: 10.1021/acsami.4c05334

    113. [113]

      P. Hu, X. Peng, S. Zhao, et al., Chem. Eng. J. 492 (2024) 152033.

    114. [114]

      W. Li, T. Ma, T. He, Y. Li, S. Yin, Chem. Eng. J. 463 (2023) 142495.

    115. [115]

      T. Ma, W. Li, J. Ye, et al., Nanoscale 15 (2023) 16947–16958.  doi: 10.1039/d3nr03881e

    116. [116]

      K. Yang, S. Zhao, B. Li, et al., Coord. Chem. Rev. 454 (2022) 214330.

    117. [117]

      Z. Chen, S. Li, F. Li, et al., Adv. Sci. 10 (2023) e2206707.

    118. [118]

      X. He, S. Zhang, Y. Tian, W. Cheng, H. Jing, Int. J. Nanomed. 18 (2023) 1433–1468.  doi: 10.2147/ijn.s405020

    119. [119]

      W. Wang, J. Yu, Y. Lin, et al., Biomater. Adv. 149 (2023) 213418.

    120. [120]

      B. Li, G. Fu, C. Liu, et al., J. Colloid Interface Sci. 665 (2024) 389–398.

    121. [121]

      J. Li, K. Kataoka, J. Am. Chem. Soc. 143 (2021) 538–559.  doi: 10.1021/jacs.0c09029

    122. [122]

      P. Wen, W. Ke, A. Dirisala, et al., Adv. Drug Deliv. Rev. 198 (2023) 114895.

    123. [123]

      C. He, P. Feng, M. Hao, et al., Adv. Funct. Mater. 34 (2024) 2402588.

  • 加载中
    1. [1]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    4. [4]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    5. [5]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    6. [6]

      Baoli YinXinlin LiuZhe LiZhifei YeYoujuan WangXia YinSulai LiuGuosheng SongShuangyan HuanXiao-Bing Zhang . Ratiometric NIR-Ⅱ fluorescent organic nanoprobe for imaging and monitoring tumor-activated photodynamic therapy. Chinese Chemical Letters, 2025, 36(5): 110119-. doi: 10.1016/j.cclet.2024.110119

    7. [7]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    8. [8]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    9. [9]

      Yuyao GuanBaoting YuJun DingTingting SunZhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645

    10. [10]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    11. [11]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    12. [12]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    13. [13]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    16. [16]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    17. [17]

      Haoran HouSiwen WeiYutong ShaoYingnan WuGaobo HongJing AnJiarui TianJianjun DuFengling SongXiaojun Peng . A 690-nm-excitable type Ⅰ & Ⅱ photosensitizer based on biotinylation of verteporfin for photodynamic therapy of deep-seated orthotopic breast tumors. Chinese Chemical Letters, 2025, 36(6): 110315-. doi: 10.1016/j.cclet.2024.110315

    18. [18]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    19. [19]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    20. [20]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

Metrics
  • PDF Downloads(0)
  • Abstract views(25)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return