Citation: Shuangyu Wu, Jian Peng, Yue Jiang, Sijie Lin. The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants[J]. Chinese Chemical Letters, ;2025, 36(11): 110819. doi: 10.1016/j.cclet.2025.110819 shu

The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants

    * Corresponding author.
    E-mail address: lin.sijie@tongji.edu.cn (S. Lin).
  • Received Date: 10 September 2024
    Revised Date: 13 November 2024
    Accepted Date: 2 January 2025
    Available Online: 2 January 2025

Figures(4)

  • Alcohols are often used as scavengers to identify the contribution of radicals for contaminant degradation in heterogeneous catalysis. The generation of alcohol radicals is often overlooked, leading to misinterpretation of degradation mechanisms and alcohol's role. Herein, a series of bismuth oxybromide (BiOBr) with varying amounts of active species was synthesized as representative catalysts to elucidate the role of alcohols in heterogeneous catalysis. Among various alcohols, isopropanol (IPA) was found to significantly enhance the photocatalytic degradation of carbamazepine (CBZ) by BiOBr. Electron paramagnetic resonance results confirmed that IPA was oxidized to alcohol radicals by BiOBr. The promotional effect of IPA was due to the generation of H2O2 through the reaction between alcohol radicals and dissolved oxygen. H2O2 subsequently led to the production of superoxide anion, the dominant radical in CBZ degradation. The promotional effect was also observed with other alcohols. The bond dissociation energy of the C–H bond adjacent to the hydroxyl group in alcohols determined the extent of promotion, while other characteristics such as the number of hydroxyl groups did not. Higher bond dissociation energy corresponded to a greater promotional effect. This study clarifies the inconsistent observations resulting from the use of various alcohols in heterogeneous catalysis and provides new insights into the overlooked role of alcohols.
  • 加载中
    1. [1]

      C. Huang, W. Dai, S. Deng, et al., Chin. Chem. Lett. 35 (2024) 109429.

    2. [2]

      B.A. Wols, C.H.M. Hofman-Caris, Water Res. 46 (2012) 2815-2827.

    3. [3]

      B.P. Chaplin, Environ Sci-Proc. Imp. 16 (2014) 1182-1203.

    4. [4]

      X. Qu, P.J.J. Alvarez, Q. Li, Water Res. 47 (2013) 3931-3946.

    5. [5]

      Y. Jiang, Y. Qin, T. Yu, S. Lin, Chin. Chem. Lett. 32 (2021) 1823-1826.

    6. [6]

      L. Wang, Q. Zhang, B. Chen, et al., Water Res. 174 (2020) 115605.

    7. [7]

      K. Makino, M.M. Mossoba, P. Riesz, J. Phys. Chem. 87 (1983) 1369-1377.  doi: 10.1021/j100231a020

    8. [8]

      T. Berndt, S. Richters, T. Jokinen, et al., Nat. Commun. 7 (2016) 13677.

    9. [9]

      C. Qin, J. Tang, R. Qiao, S. Lin, Chin. Chem. Lett. 33 (2022) 5218-5222.

    10. [10]

      Y. Jiang, D. Baimanov, S. Jin, et al., Proc. Nat. Acad. Sci. U. S. A. 120 (2023) e2210211120.

    11. [11]

      G. Heit, A. Neuner, P.Y. Saugy, A.M. Braun, J. Phys. Chem. A 102 (1998) 5551-5561.

    12. [12]

      E. Popov, M. Mametkuliyev, D. Santoro, L. Liberti, J. Eloranta, Environ. Sci. Technol. 44 (2010) 7827-7832.  doi: 10.1021/es101959y

    13. [13]

      L. Wang, B. Li, D.D. Dionysiou, et al., Environ. Sci. Technol. 56 (2022) 3386-3396.  doi: 10.1021/acs.est.1c03796

    14. [14]

      L. Ding, Y. Hou, H. Liu, et al., ACS ES&T Water 3 (2023) 3534-3543.  doi: 10.1021/acsestwater.3c00271

    15. [15]

      H.A. Schwarz, R.W. Dodson, J. Phys. Chem. 93 (1989) 409-414.  doi: 10.1021/j100338a079

    16. [16]

      C. Zhu, F. Zhu, D.D. Dionysiou, et al., Water Res. 139 (2018) 66-73.

    17. [17]

      X. Wang, D. Si, Y. Li, et al., Water Res. 245 (2023) 120557.

    18. [18]

      Y. Chen, M. Xu, J. Wen, et al., Nat. Sustain. 4 (2021) 618-626.  doi: 10.1038/s41893-021-00697-4

    19. [19]

      X. Chen, S. Guan, J. Zhou, et al., Angew. Chem. Int. Ed. 62 (2023) e202312734.

    20. [20]

      Y. Chen, S. Guan, H. Ge, et al., Angew. Chem. Int. Ed. 61 (2022) e202213640.

    21. [21]

      H. Shang, Y. Chen, S. Guan, et al., Nat. Chem. Eng. 1 (2024) 170-179.  doi: 10.1038/s44286-023-00026-w

    22. [22]

      J. Cao, Z. Xu, Y. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202302202.

    23. [23]

      W. Jones, D.J. Martin, A. Caravaca, et al., Appl. Catal. B: Environ. 240 (2019) 373-379.

    24. [24]

      M. Teranishi, S.I. Naya, H. Tada, J. Phys. Chem. C 120 (2016) 1083-1088.  doi: 10.1021/acs.jpcc.5b10626

    25. [25]

      G. Ren, M. Shi, Z. Li, Z. Zhang, X. Meng, Appl. Catal. B: Environ. 327 (2023) 122462.

    26. [26]

      J. Di, J. Xia, H. Li, S. Guo, S. Dai, Nano Energy 41 (2017) 172-192.

    27. [27]

      X. Xue, R. Chen, H. Chen, et al., Nano Lett. 18 (2018) 7372-7377.  doi: 10.1021/acs.nanolett.8b03655

    28. [28]

      X. Shi, P. Wang, W. Li, et al., Appl. Catal. B: Environ. 243 (2019) 322-329.

    29. [29]

      S. Zhang, G. Hu, M. Chen, et al., Appl. Catal. B: Environ. 330 (2023) 122584.

    30. [30]

      S. Zhang, X. Yi, G. Hu, et al., Coord. Chem. Rev. 478 (2023) 214970.

    31. [31]

      H. Tan, Z. Zhao, W.B. Zhu, et al., ACS Appl. Mater. 6 (2014) 19184-19190.  doi: 10.1021/am5051907

    32. [32]

      X. Tong, X. Cao, T. Han, et al., Nano Res. 12 (2019) 1625-1630.  doi: 10.1007/s12274-018-2404-x

    33. [33]

      M. Shi, G. Li, J. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 6590-6595.  doi: 10.1002/anie.201916510

    34. [34]

      J. Wu, X. Li, W. Shi, et al., Angew. Chem. Int. Ed. 57 (2018) 8719-8723.  doi: 10.1002/anie.201803514

    35. [35]

      X. Ren, M. Gao, Y. Zhang, et al., Appl. Catal. B: Environ. 274 (2020) 119063.

    36. [36]

      Z. Miao, Q. Wang, Y. Zhang, L. Meng, X. Wang, Appl. Catal. B: Environ. 301 (2022) 120802.

    37. [37]

      S. Xi, J. Xue, F. Wang, X. Li, J. Phys. Chem. A 125 (2021) 5423-5437.  doi: 10.1021/acs.jpca.1c00784

    38. [38]

      B.R. Müller, S. Majoni, D. Meissner, R. Memming, J Photoch Photobio A 151 (2002) 253-265.

    39. [39]

      K. Sathiyan, R. Bar-Ziv, V. Marks, D. Meyerstein, T. Zidki, Chem. Eur. J. 27 (2021) 15936-15943.  doi: 10.1002/chem.202103040

    40. [40]

      G.D. Fang, D.D. Dionysiou, S.R. Al-Abed, D.M. Zhou, Appl. Catal. B: Environ. 129 (2013) 325-332.

    41. [41]

      M.N. Schuchmann, C. Von Sonntag, J. Phys. Chem. 83 (1979) 780-784.  doi: 10.1021/j100470a004

    42. [42]

      Z. Gao, D. Zhang, Y.S. Jun, Environ. Sci. Technol. 55 (2021) 10442-10450.  doi: 10.1021/acs.est.1c01578

    43. [43]

      J. Peng, Y. Jiang, S. Wu, et al., Chin. Chem. Lett. 35 (2023) 108903.

    44. [44]

      W. Zhang, W. Huang, J. Jin, Y. Gan, S. Zhang, Appl. Catal. B: Environ. 292 (2021) 120197.

    45. [45]

      G. Tan, L. She, T. Liu, et al., Appl. Catal. B: Environ. 207 (2017) 120-133.

    46. [46]

      V.B. Oyeyemi, J.A. Keith, E.A. Carter, J. Phys. Chem. A 118 (2014) 3039-3050.  doi: 10.1021/jp501636r

    47. [47]

      T. Newhouse, P.S. Baran, Angew. Chem. Int. Ed. 50 (2011) 3362-3374.  doi: 10.1002/anie.201006368

    48. [48]

      I.A. Shkrob, M.C. Sauer, D. Gosztola, J. Phys. Chem. B 108 (2004) 12512-12517.

    49. [49]

      S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Environ. Sci. Technol. 41 (2007) 7486-7490.  doi: 10.1021/es071379t

    50. [50]

      O.C. Zafiriou, Mar. Chem. 30 (1990) 31-43.

  • 加载中
    1. [1]

      Siyang XueChen ChengJieqiong KangKaixuan ZhengAdela Jing LiRenli Yin . Oxygen vacancies-rich BiOBr bridged direct electron transfer with peroxymonosulfate for integrating superoxide radical and singlet oxygen on selective pollutants degradation. Chinese Chemical Letters, 2025, 36(10): 110776-. doi: 10.1016/j.cclet.2024.110776

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    4. [4]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    7. [7]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    8. [8]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    9. [9]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    10. [10]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    11. [11]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    12. [12]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    13. [13]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    14. [14]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    16. [16]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    17. [17]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    18. [18]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    19. [19]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    20. [20]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(0)
  • Abstract views(20)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return