Citation: Hong-Qiang Dong, Shang-Bo Yu, Shu-Meng Wang, Jia-Hao Zhao, Xu-Guan Bai, Shi-Xing Lei, Zhen-Nan Tian, Jia Tian, Kang-Da Zhang, Lu Wang, Zhan-Ting Li, Shigui Chen. Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity[J]. Chinese Chemical Letters, ;2025, 36(8): 110730. doi: 10.1016/j.cclet.2024.110730 shu

Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity

    * Corresponding authors.
    E-mail addresses: kangda.zhang@zjnu.cn (K.-D. Zhang), sgchen@whu.edu.cn (S.-G. Chen).
  • Received Date: 14 September 2024
    Revised Date: 27 November 2024
    Accepted Date: 5 December 2024
    Available Online: 6 December 2024

Figures(6)

  • The development of organic frameworks with radical skeletons is desired. In this study, we report the development of a novel two-dimensional radical halogen-bonded organic framework (XOF). The radical monomer, benzimidazole triphenylmethyl (BTTM), was synthesized through the coupling of TTM radicals with benzimidazole. Initially, the benzimidazole units were coordinated with Ag+ ions to create a [N···Ag···N]+ framework. Subsequently, the addition of iodine led to the in situ replacement of Ag+ with I+ ions, forming [N···I···N]+ linkers and resulting in the creation of the XOF structure. The resulting XOF-HBTTM and XOF-BTTM structures demonstrated good-crystallinity, confirmed by PXRD, HR-TEM, SEAD, and SAXS analyses. EPR measurements confirmed the preservation of radical characteristics within the XOF framework. Furthermore, SQUID measurements indicated that XOF-BTTM exhibits spin moments of S = 1/2 at 2 K, with a saturated magnetization strength peaking at 4.10 emu/g, a notable enhancement compared to 1.87 emu/g for the BTTM monomer. This improvement in magnetism is attributed to the extended spin density distribution and the presence of [N···I···N]+ interactions, as suggested by DFT calculations. Additionally, the radical XOF-BTTM exhibited significantly enhanced electrical conductivity, reaching up to 1.30 × 10−4 S/cm, which is two orders of magnitude higher than that of XOF-HBTTM. This increased conductivity is linked to a reduced HOMO-LUMO gap, higher carrier density, and the incorporation of triphenylmethyl radicals within the framework. This research highlights the potential of benzimidazolyl motifs in constructing functional XOFs and advances our understanding of radical organic frameworks.
  • 加载中
    1. [1]

      S. Kasemthaveechok, L. Abella, J. Crassous, et al., Chem. Sci. 13 (2022) 9833–9847.  doi: 10.1039/d2sc02480b

    2. [2]

      Z.X. Chen, Y. Li, F. Huang, Chem 7 (2021) 288–332.

    3. [3]

      T. Kubo, M. Abe, Chem. Rev. 124 (2024) 4541–4542.  doi: 10.1021/acs.chemrev.3c00893

    4. [4]

      D. Maspoch, N. Domingo, D. Ruiz-Molina, et al., Angew. Chem. Int. Ed. 43 (2004) 1828–1832.

    5. [5]

      Y. Jiang, I. Oh, S.H. Joo, et al., ACS Nano 13 (2019) 5251–5258.  doi: 10.1021/acsnano.8b09634

    6. [6]

      I. Ratera, J. Veciana, Chem. Soc. Rev. 41 (2012) 303–349.

    7. [7]

      K.Q. Hu, Z.W. Huang, X.B. Li, et al., Adv. Funct. Mater. 33 (2023) 2213039.

    8. [8]

      F. Chen, X. Guan, H. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 22230–22235.  doi: 10.1002/anie.202108357

    9. [9]

      F. Xu, H. Xu, X. Chen, et al., Angew. Chem. Int. Ed. 54 (2015) 6814–6818.  doi: 10.1002/anie.201501706

    10. [10]

      M.P. Sibi, C. Li, N. Jiao, Sci. China Chem. 62 (2019) 1423–1424.  doi: 10.1007/s11426-019-9643-y

    11. [11]

      A. Bhunia, A. Studer, Chem 7 (2021) 2060–2100.

    12. [12]

      M. Mas-Torrent, N. Crivillers, C. Rovira, J. Veciana, Chem. Rev. 112 (2012) 2506–2527.  doi: 10.1021/cr200233g

    13. [13]

      B. Tang, J. Zhao, J.F. Xu, X. Zhang, Chem. Sci. 11 (2020) 1192–1204.  doi: 10.1039/c9sc06143f

    14. [14]

      J. Sun, Z. Liu, W.G. Liu, et al., J. Am. Chem. Soc. 139 (2017) 12704–12709.  doi: 10.1021/jacs.7b06857

    15. [15]

      K.T. Tan, S. Ghosh, Z. Wang, et al., Nat. Rev. Methods Primers 3 (2023) 1–19.

    16. [16]

      X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 41 (2012) 6010–6022.  doi: 10.1039/c2cs35157a

    17. [17]

      J. Zhang, W. Kosaka, Y. Kitagawa, H. Miyasaka, Nat. Chem. 13 (2021) 191–199.  doi: 10.1038/s41557-020-00577-y

    18. [18]

      R.B. Lin, Y. He, P. Li, et al., Chem. Soc. Rev. 48 (2019) 1362–1389.  doi: 10.1039/c8cs00155c

    19. [19]

      B. Yang, S.B. Yu, P.Q. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 26268–26275.  doi: 10.1002/anie.202112514

    20. [20]

      J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38 (2009) 1477–1504.  doi: 10.1039/b802426j

    21. [21]

      J. Dong, X. Han, Y. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 13722–13733.  doi: 10.1002/anie.202004796

    22. [22]

      C. Liu, C. Jia, S.X. Gan, et al., Chin. Chem. Lett. 35 (2024) 109750.

    23. [23]

      S.M.J. Rogge, A. Bavykina, J. Hajek, et al., Chem. Soc. Rev. 46 (2017) 3134–3184.

    24. [24]

      Q. Zhu, L. Wei, C. Zhao, et al., J. Am. Chem. Soc. 145 (2023) 23352–23360.  doi: 10.1021/jacs.3c09246

    25. [25]

      H. Furukawa, O.M. Yaghi, J. Am. Chem. Soc. 131 (2009) 8875–8883.  doi: 10.1021/ja9015765

    26. [26]

      S. Tao, D. Jiang, CCS Chem. 3 (2021) 2003–2024.  doi: 10.31635/ccschem.020.202000491

    27. [27]

      S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 141 (2019) 1807–1822.  doi: 10.1021/jacs.8b10334

    28. [28]

      N. Keller, T. Bein, Chem. Soc. Rev. 50 (2021) 1813–1845.  doi: 10.1039/d0cs00793e

    29. [29]

      J. Guo, Y. Duan, Y. Jia, et al., Nat. Commun. 15 (2024) 139.

    30. [30]

      Y.Z. Cheng, W. Ji, X. Wu, et al., Appl. Catal. B: Environ. 306 (2022) 121110.

    31. [31]

      Q. Gu, X. Lu, C. Chen, et al., ACS Nano 17 (2023) 23903–23912.  doi: 10.1021/acsnano.3c08313

    32. [32]

      Z. Mi, P. Yang, R. Wang, et al., J. Am. Chem. Soc. 141 (2019) 14433–14442.  doi: 10.1021/jacs.9b07695

    33. [33]

      W. Cao, W.D. Wang, H.S. Xu, et al., J. Am. Chem. Soc. 140 (2018) 6969–6977.  doi: 10.1021/jacs.8b02839

    34. [34]

      H. Li, J. Chang, S. Li, et al., J. Am. Chem. Soc. 141 (2019) 13324–13329.  doi: 10.1021/jacs.9b06908

    35. [35]

      Y. Zhou, F. Yu, J. Su, et al., Angew. Chem. Int. Ed. 59 (2020) 18763–18767.  doi: 10.1002/anie.202008941

    36. [36]

      L. Mao, M. Zhou, X. Shi, H.B. Yang, Chin. Chem. Lett. 32 (2021) 3331–3341.

    37. [37]

      G. Cavallo, P. Metrangolo, R. Milani, et al., Chem. Rev. 116 (2016) 2478–2601.  doi: 10.1021/acs.chemrev.5b00484

    38. [38]

      L.C. Gilday, S.W. Robinson, T.A. Barendt, et al., Chem. Rev. 115 (2015) 7118–7195.  doi: 10.1021/cr500674c

    39. [39]

      H. Wang, W. Wang, W.J. Jin, Chem. Rev. 116 (2016) 5072–5104.  doi: 10.1021/acs.chemrev.5b00527

    40. [40]

      F. Zapata, A. Caballero, N.G. White, et al., J. Am. Chem. Soc. 134 (2012) 11533–11541.  doi: 10.1021/ja302213r

    41. [41]

      C.Z. Liu, S. Koppireddi, H. Wang, et al., Chin. Chem. Lett. 30 (2019) 953–956.  doi: 10.3390/app9050953

    42. [42]

      J.Y.C. Lim, I. Marques, V. Félix, P.D. Beer, Angew. Chem. Int. Ed. 57 (2018) 584–588.  doi: 10.1002/anie.201711176

    43. [43]

      J.T. Wilmore, P.D. Beer, Adv. Mater. 36 (2024) 2309098.

    44. [44]

      P. Metrangolo, F. Meyer, T. Pilati, et al., Angew. Chem. Int. Ed. 47 (2008) 6114–6127.  doi: 10.1002/anie.200800128

    45. [45]

      A. Mukherjee, S. Tothadi, G.R. Desiraju, Acc. Chem. Res. 47 (2014) 2514–2524.  doi: 10.1021/ar5001555

    46. [46]

      P.M.J. Szell, S. Zablotny, D.L. Bryce, Nat. Commun. 10 (2019) 916.

    47. [47]

      A.C. Keuper, K. Fengler, F. Ostler, et al., Angew. Chem. Int. Ed. 62 (2023) e202304781.

    48. [48]

      L. Turunen, M. Erdélyi, Chem. Soc. Rev. 49 (2020) 2688–2700.  doi: 10.1039/d0cs00034e

    49. [49]

      L.H.E. Wieske, M. Erdelyi, J. Am. Chem. Soc. 146 (2024) 3–18.  doi: 10.1021/jacs.3c11449

    50. [50]

      L. Turunen, U. Warzok, C.A. Schalley, K. Rissanen, Chem 3 (2017) 861–869.

    51. [51]

      L. Turunen, U. Warzok, R. Puttreddy, et al., Angew. Chem. Int. Ed. 55 (2016) 14033–14036.  doi: 10.1002/anie.201607789

    52. [52]

      L. Turunen, A. Peuronen, S. Forsblom, et al., Chem. Eur. J. 23 (2017) 11714–11718.  doi: 10.1002/chem.201702655

    53. [53]

      S. Yu, E. Kalenius, A. Frontera, K. Rissanen, Chem. Commun. 57 (2021) 12464–12467.  doi: 10.1039/d1cc05616f

    54. [54]

      G. Gong, S. Lv, J. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 14831–14835.  doi: 10.1002/anie.202102448

    55. [55]

      Z. Tian, J. Zhao, G. Gong, et al., Sci. China Chem. 53 (2023) 2367–2377.

    56. [56]

      G. Gong, J. Zhao, Y. Chen, et al., J. Mater. Chem. A 10 (2022) 10586–10592.  doi: 10.1039/d2ta00628f

    57. [57]

      S. Wang, H. Dong, G. Gong, et al., Mater. Chem. Front. 8 (2024) 4096–4105.  doi: 10.1039/d4qm00735b

    58. [58]

      Q. Zhao, P. Sun, G. Gong, et al., Sci. China Chem. 68 (2025) 631–640.  doi: 10.1007/s11426-024-2204-8

    59. [59]

      N. Xia, J. Han, F. Xie, et al., ACS Appl. Mater. Interfaces 14 (2022) 43621–43627.  doi: 10.1021/acsami.2c11598

    60. [60]

      P. Sun, H. Dong, S. Lv, et al., J. Mater. Chem. A 12 (2024) 1128–1134.  doi: 10.1039/d3ta06144b

    61. [61]

      N. Xia, J. Zhao, G. Gong, et al., Sci. China Chem. 66 (2023) 3169–3177.  doi: 10.1007/s11426-023-1829-8

    62. [62]

      X. Bai, Z. Tian, H. Dong, et al., Angew. Chem. Int. Ed. 63 (2024) e202408428.

    63. [63]

      P.Mayorga Burrezo, V.G. Jiménez, D. Blasi, et al., Angew. Chem. Int. Ed. 58 (2019) 16282–16288.

    64. [64]

      J. Zhao, N. Xia, Z. Tian, et al., ACS Mater. Lett. 6 (2024) 508–516.  doi: 10.1021/acsmaterialslett.3c01276

    65. [65]

      Y. Gao, W. Xu, H. Ma, et al., Chem. Mater. 29 (2017) 6733–6739.  doi: 10.1021/acs.chemmater.7b01521

    66. [66]

      P.M.A. Sherwood, J. Chem. Soc., Faraday Trans. 72 (1976) 1805–1820.

    67. [67]

      W. Zhang, L. Zhou, J. Shi, H. Deng, J. Colloid Interface Sci. 496 (2017) 167–176.

    68. [68]

      T. Jiao, H. Qu, L. Tong, et al., Angew. Chem. Int. Ed. 60 (2021) 9852–9858.  doi: 10.1002/anie.202100655

    69. [69]

      X. Xu, Y. Yue, G. Xin, N. Huang, Macromol. Rapid Commun. 44 (2023) 2200715.

  • 加载中
    1. [1]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    2. [2]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    3. [3]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    4. [4]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    5. [5]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Jingtao BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Corrigendum to “Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation” [Chinese Chemical Letters 35 (2024) 109639]. Chinese Chemical Letters, 2025, 36(7): 110867-. doi: 10.1016/j.cclet.2025.110867

    8. [8]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    9. [9]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Jiang GongFengling ZhengHanqing ZhangWeihan ShuHao WangNi ZhangPengbing HuangChuancai ZhangBin Dai . The interfacial effect of SiO2-Ni3Mo3N efficiently catalyzes the low-temperature hydrogenation of dimethyl oxalate to ethanol. Chinese Chemical Letters, 2025, 36(8): 111122-. doi: 10.1016/j.cclet.2025.111122

    12. [12]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    13. [13]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    14. [14]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    15. [15]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    18. [18]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    19. [19]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    20. [20]

      Kexiang ZhaoZongrui WangQi-Yuan WanJing-Cai ZengLi DingJie-Yu WangJian Pei . Janus-type BN-embedded perylene diimides via a "shuffling" strategy: Regioselective functionalizable building block towards high-performance n-type organic semiconductors. Chinese Chemical Letters, 2025, 36(6): 110339-. doi: 10.1016/j.cclet.2024.110339

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return