Citation: Jiajie Gu, Jiaxiang Gu, Lei Yu. Selenium and Alzheimer's disease[J]. Chinese Chemical Letters, ;2025, 36(8): 110727. doi: 10.1016/j.cclet.2024.110727 shu

Selenium and Alzheimer's disease

    * Corresponding authors.
    E-mail addresses: gjx69@163.com (J. Gu),
    yulei@yzu.edu.cn (L. Yu).
  • Received Date: 27 May 2024
    Revised Date: 26 November 2024
    Accepted Date: 5 December 2024
    Available Online: 6 December 2024

Figures(4)

  • Selenium is an essential trace element for human beings and it plays a significant role for the health of human nervous system. The strong antioxidant effect of selenium endows the element with the ability to treat various diseases, including Alzheimer's disease (AD). In the body, selenium exists in the forms of selenoproteins, which could treat AD through various pathways, such as inhibiting peroxidation, inhibiting apoptosis signal pathway, reducing the levels of Aβ in neurons and alleviating Tau protein caused by pathological damage. This article aims to comprehensively elaborate on the relationship between selenium and AD.
  • 加载中
    1. [1]

      Z. Zhang, S. Wang, P. Tan, et al., Org. Lett. 24 (2022) 2288–2293.  doi: 10.1021/acs.orglett.2c00387

    2. [2]

      D. Yong, J. Tian, R. Yang, Q. Wu, X. Zhang, Chin. J. Org. Chem. 44 (2024) 1343–1347.  doi: 10.6023/cjoc202310020

    3. [3]

      X. Li, H. Hua, Y. Liu, L. Yu, Org. Lett. 25 (2023) 6720–6724.  doi: 10.1021/acs.orglett.3c02569

    4. [4]

      H. Cao, P. Li, X. Jing, H. Zhou, Chin. J. Org. Chem. 42 (2022) 3890–3895.

    5. [5]

      Z. Zhu, S. Sun, S. Tang, S. Chu, X. Zhang, Mol. Catal. 515 (2021) 111923.

    6. [6]

      S. Hariharan, S. Dharmaraj, Inflammopharmacology 28 (2020) 667–695.  doi: 10.1007/s10787-020-00690-x

    7. [7]

      A. Razaghi, M. Poorebrahim, D. Sarhan, M. Björnstedt, Eur. J. Cancer 155 (2021) 256–267.

    8. [8]

      D.T. Juniper, R.H. Phipps, E. Ramos-Morales, G. Bertin, J. Anim. Sci. 86 (2008) 3100–3109.  doi: 10.2527/jas.2007-0595

    9. [9]

      S.J. Fairweather-Tait, Y. Bao, M.R. Broadley, et al., Antioxid. Redox Sign. 14 (2011) 1337–1383.  doi: 10.1089/ars.2010.3275

    10. [10]

      J. Li, Q. Shi, Y. Xue, et al., Chin. Chem. Lett. 35 (2024) 109239.

    11. [11]

      W. Ding, S. Wang, J. Gu, L. Yu, Chin. Chem. Lett. 34 (2023) 108043.

    12. [12]

      H. Fei, C. Qian, X. Wu, et al., World J. Clin. Cases 10 (2022) 7631–7641.  doi: 10.12998/wjcc.v10.i22.7631

    13. [13]

      S. Gao, Y. Jin, K.S. Hall, et al., Am. J. Epidemiol. 165 (2007) 955–965.  doi: 10.1093/aje/kwk073

    14. [14]

      R. Pillail, J.H. Uyehara-Lock, F.P. Bellinger, IUBMB Life 66 (2014) 229–239.

    15. [15]

      S. Khan, K.H. Barve, M.S. Kumar, Curr. Neuropharmacol. 18 (2020) 1106–1125.  doi: 10.2174/1570159x18666200528142429

    16. [16]

      A. Atri, Med. Clin. N. Am. 103 (2019) 263–293.

    17. [17]

      R. González-Domínguez, T. García-Barrera, J.L. Gómez-Ariza, Biometals. 27 (2014) 539–549.  doi: 10.1007/s10534-014-9728-5

    18. [18]

      B.R. Cardoso, B.R. Roberts, A.I. Bush, D.J. Hare, Metallomics 7 (2015) 1213–1228.

    19. [19]

      R. Cacace, K. Sleegers, C. Van Broeckhoven, Alzheimers Dement. 12 (2016) 733–748.  doi: 10.1016/j.jalz.2016.01.012

    20. [20]

      J. Aaseth, A.V. Skalny, P.M. Roos, et al., Int. J. Mol. Sci., 22 (2021) 9461.  doi: 10.3390/ijms22179461

    21. [21]

      L. Chouliaras, A.S.R. Sierksma, G. Kenis. et al., Int. J. Alzheimers Dis. 2010 (2010) 859101.

    22. [22]

      P.H. Reddy, Brain Res. 1415 (2011) 136–148.

    23. [23]

      Y. Yoshiyama, V.M.Y. Lee, J.Q. Trojanowski, J. Neurol. Neurosur. Ps. 84 (2013) 784–795.  doi: 10.1136/jnnp-2012-303144

    24. [24]

      G. Pizzino, N. Irrera, M. Cucinotta, et al., Oxid. Med. Cell. Longev. 2017 (2017) 8416763.

    25. [25]

      G. Juszczyk, J. Mikulska, K. Kasperek, et al., Antioxidants 10 (2021) 1439.  doi: 10.3390/antiox10091439

    26. [26]

      R.H. Swerdlow, J.M. Burns, S.M. Khan, BBA-MOL. Basis Dis. 1842 (2014) 1219–1231.

    27. [27]

      S. Haider, S. Saleem, T. Perveen, et al., Age (Omaha) 36 (2014) 1291–1302.

    28. [28]

      Z. Zhang, G. Song, Front. Neurosci-Switz. 15 (2021) 646518.

    29. [29]

      L.V. Papp, A. Holmgren, K.K. Khanna, Antioxid. Redox Sign. 12 (2010) 793–795.  doi: 10.1089/ars.2009.2973

    30. [30]

      J. Pei, X. Pan, G. Wei, Y. Hua, Front. Pharmacol. 14 (2023) 1147414.

    31. [31]

      J. Godos, F. Giampieri, A. Micek, et al., Antioxidants 11 (2022) 403.  doi: 10.3390/antiox11020403

    32. [32]

      G. Song, Z. Zhang, L. Wen, et al., J. Alzheimers Dis. 41 (2014) 85–99.  doi: 10.3233/jad-131805

    33. [33]

      Z. Zhang, Q. Wu, R. Zheng, et al., J. Neurosci. 37 (2017) 2449–2462.

    34. [34]

      J. Chen, M.J. Berry, J. Neurochem. 86 (2003) 1–12.  doi: 10.1071/ASEG2003_3DEMab004

    35. [35]

      R.F. Burk, D.G. Brown, R.J. Seely, C.C. Scaief, J. Nutr. 102 (1972) 1049–1055.

    36. [36]

      Y. Zhang, Y. Zhou, U. Schweizer, et al., J. Biol. Chem. 283 (2008) 2427–2438.

    37. [37]

      S. Behl, S. Mehta, M.K. Pandey, Front. Mol. Neurosci. 16 (2023) 1130922.

    38. [38]

      Y. Ye, Y. Shibata, C. Yun, D. Ron, T.A. Rapoport, Nature 429 (2004) 841–847.

    39. [39]

      J.H. Lee, K.J. Park, J.K. Jang, et al., J. Biol. Chem. 290 (2015) 29941–29952.  doi: 10.1074/jbc.M115.680215

    40. [40]

      S. Prast-Nielsens, H. Huang, D.L. Williams, BBA-GEN. Subjects 1810 (2011) 1262–1271.

    41. [41]

      T. Tamura, T.C. Stadtman, Method. Enzymol. 347 (2002) 297–306.

    42. [42]

      F.P. Bellinger, A.V. Raman, M.A. Reeves, M.J. Berry, Biochem. J. 422 (2009) 11–22.

    43. [43]

      F. Mohammadi, A. Soltani, A. Ghahremanloo, H. Javid, S.I. Hashemy, Cancer Chemoth. Pharm. 84 (2019) 925–935.  doi: 10.1007/s00280-019-03912-4

    44. [44]

      M. Selenius, A.K. Rundlöf, E. Olm, A.P. Fernandes, M. Björnstedt, Antioxid. Redox Sign. 12 (2010) 867–880.  doi: 10.1089/ars.2009.2884

    45. [45]

      G.J. Beckett, J.R. Arthur, J. Endocrinol. 184 (2005) 455–465.  doi: 10.1677/joe.1.05971

    46. [46]

      D.L. St Germain, V.A. Galton, Thyroid 7 (1997) 655–668.

    47. [47]

      O.M. Ahmed, A.W. El-Gareib, A.M. El-Bakry, S.M. Abd El-Tawab, R.G. Ahmed, Int. J. Dev. Neurosci. 26 (2008) 147–209.  doi: 10.1016/j.ijdevneu.2007.09.011

    48. [48]

      N.V. Barbosa, C.W. Nogueira, P.A. Nogara, et al., Metallomics 9 (2017) 1703–1734.

    49. [49]

      J.C. Avery, P.R. Hoffmann, Nutrients 10 (2018) 1203.  doi: 10.3390/nu10091203

    50. [50]

      W.S. Hambright, R.S. Fonseca, L. Chen, R. Na, Q. Ran, Redox Biol. 12 (2017) 8–17.

    51. [51]

      R. Sultan, M. Perluigi, D.A. Butterfield, Antioxid. Redox Sign. 8 (2006) 2021–2037.

    52. [52]

      A. Seiler, M. Schneider, H. Förster, et al., Cell Metab. 8 (2008) 237–248.

    53. [53]

      P.J. Crack, K. Cimdins, U. Ali, P.J. Hertzog, R.C. Iannello, J. Neural Transm. 113 (2006) 645–657.  doi: 10.1007/s00702-005-0352-y

    54. [54]

      G. Barchielli, A. Capperucci, D. Tanini, Antioxidants 11 (2022) 251.  doi: 10.3390/antiox11020251

    55. [55]

      F.P. Bellinger, Q. He, M.T. Bellinger, et al., J. Alzheimers Dis. 15 (2008) 465–472.

    56. [56]

      Q. Liu, C.V. Zerbinatti, J. Zhang, Neuron 56 (2007) 66–78.

    57. [57]

      Z. Li, F. Shue, N. Zhao, M. Shinohara, G. Bu, Mol. Neurodegener. 15 (2020) 63.  doi: 10.1007/978-3-030-48513-9_5

    58. [58]

      X. Du, S. Qiu, Z. Wang, et al., Int. J. Mol. Sci. 15 (2014) 10199–10214.  doi: 10.3390/ijms150610199

    59. [59]

      A.S. Takemoto, M.J. Berry, F.P. Bellinger, Ethnic. Dis. 20 (2010) 92–95.

    60. [60]

      M.P. Rayman, Lancet 379 (2012) 1256–1268.

    61. [61]

      Z. Peng, J. Huang, Overview of Selenium Resources in Enshi, the Selenium Capital of the World, Tsinghua University Press, 2012.

    62. [62]

      M.P. Rayman, P. Nutr. Soc. 64 (2005) 527–542.

    63. [63]

      K. Radimer, B. Bindewald, J. Hughes, et al., Am. J. Epidemiol. 160 (2004) 339–349.

    64. [64]

      M.E. Pereira, J.V. Souza, M.E.A. Galiciolli, et al., Nutrients 14 (2022) 3205.  doi: 10.3390/nu14153205

    65. [65]

      H. Ohkawa, N. Ohishi, K. Yagi, Anal. Biochem. 95 (1979) 351–358.

    66. [66]

      S. Xiong, W.R. Markesbery, C. Shao, M.A. Lovell, Antioxid. Redox Sign. 9 (2007) 457–467.  doi: 10.1089/ars.2006.1363

    67. [67]

      M. Wang, B. Li, S. Li, et al., J. Agric. Food Chem. 69 (2021) 15458–15467.  doi: 10.1021/acs.jafc.1c04992

    68. [68]

      J. Huang, L. Xie, A. Song, C. Zhang, Oxid. Med. Cell. Longev. (2022) https://doi.org/10.1155/2022/7009863.  doi: 10.1155/2022/7009863

    69. [69]

      Z. Zhang, C. Chen, S. Jia, et al., Antioxid. Redox Sign. 35 (2021) 863–884.

    70. [70]

      Z. Zhang, L. Wen, Q. Wu, et al., J. Agric. Food Chem. 65 (2017) 4970–4979.  doi: 10.1021/acs.jafc.7b01465

    71. [71]

      Z. Zhang, Q. Wu, C. Chen, et al., Food Funct. 9 (2018) 3965–3973.  doi: 10.1039/c7fo02063e

    72. [72]

      Y. Xie, Q. Liu, L. Zheng, et al., Mol. Nutr. Food Res. 62 (2018) e1800107.

    73. [73]

      Y. Xie, Y. Tan, Y. Zheng, X. Du, Q. Liu, J. Biol. Inorg. Chem. 22 (2017) 851–865.  doi: 10.1007/s00775-017-1463-2

    74. [74]

      J. Iqbal, K. Zhang, N. Jin, et al., ACS Chem. Neurosci. 9 (2018) 1637–1651.  doi: 10.1021/acschemneuro.8b00034

    75. [75]

      B.R. Cardoso, B.R. Roberts, C.B. Malpas, et al., Neurotherapeutics 16 (2019) 192–202.  doi: 10.1007/s13311-018-0662-z

    76. [76]

      E. Lipiec, G. Siara, K. Bierla, L. Ouerdane, J. Szpunar, Anal. Bioanal. Chem. 397 (2010) 3544–3548.

    77. [77]

      M. Sano, C. Ernesto, R.G. Thomas, et al., New Engl. J. Med. 336 (1997) 1216–1222.

    78. [78]

      D.R. Galasko, E. Peskind, C.M. Clark, et al., Arch. Neurol-Chicago 69 (2012) 836–841.

    79. [79]

      R.J. Kryscio, E.L. Abner, A. Caban-Holt, et al., JAMA Neurol. 74 (2017) 567–573.  doi: 10.1001/jamaneurol.2016.5778

    80. [80]

      C. Martinelli, C. Pucci, M. Battaglini, A. Marino, G. Ciofani, Adv. Healthc. Mater. 9 (2019) e1901589.

    81. [81]

      A.A. El-Refai, G.A. Ghoniem, A.Y. El-Khateeb, M.M. Hassaan, J. Nanostructure Chem. 8 (2018) 71–81.  doi: 10.1007/s40097-018-0255-8

    82. [82]

      H. Ashraf, D. Cossu, S. Ruberto, et al., Materials (Basel) 16 (2023) 699.  doi: 10.3390/ma16020699

    83. [83]

      A. Rehman, P. John, A. Bhatti, Nanomaterials 11 (2021) 2005.  doi: 10.3390/nano11082005

    84. [84]

      A. Khurana, S. Tekula, M.A. Saifi, P. Venkatesh, C. Godugu, Biomed. Pharmacother. 111 (2019) 802–812.

    85. [85]

      H. Zhang, T. Wang, W. Qiu, et al., Nano Lett. 18 (2018) 4985–4992.  doi: 10.1021/acs.nanolett.8b01818

    86. [86]

      S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, et al., Int. J. Infect. Dis. 8 (2004) 39–45.

    87. [87]

      X. Zhou, J. Sun, T. Yin, et al., J. Mater. Chem. B 3 (2015) 7764–7774.

    88. [88]

      L. Yang, J. Sun, W. Xie, Y. Liu, J. Liu, J. Mater. Chem. B 5 (2017) 5954–5967.

    89. [89]

      Z. Zhang, X. Cao, J. Peng, et al., Antioxidants 11 (2022) 829.  doi: 10.3390/antiox11050829

    90. [90]

      Q. Hu, W. Teng, J. Li, F. Hao, N. Wang, J. Alzheimers Dis. 52 (2016) 747–756.

    91. [91]

      W. Zhou, P. Li, J. Lui, L. Yu, Ind. Eng. Chem. Res. 59 (2020) 10763–10767.  doi: 10.1021/acs.iecr.0c01147

    92. [92]

      M. Zhao, Q. Sun, M.K. Khogali, et al., Biol. Trace Elem. Res. 199 (2021) 4746–4752.  doi: 10.1007/s12011-021-02603-7

    93. [93]

      Q. Wang, P. Li, T. Li, et al., Ind. Eng. Chem. Res. 60 (2021) 8659–8663.  doi: 10.1021/acs.iecr.1c01437

    94. [94]

      L. Xian, Q. Li, T. Li, L. Yu, Chin. Chem. Lett. 34 (2023) 107878.

    95. [95]

      X. Mao, P. Li, T. Li, et al., Chin. Chem. Lett. 31 (2020) 3276–3278.

    96. [96]

      H. Cao, Y. Yang, X. Chen, et al., Chin. Chem. Lett. 31 (2020) 1887–1889.

    97. [97]

      X. Chen, S. Zhuang, W. Yan, Chin. Chem. Lett. 35 (2024) 109635.

    98. [98]

      X. Xiao, Z. Shao, L. Yu, Chin. Chem. Lett. 32 (2021) 2933–2938.

  • 加载中
    1. [1]

      Weiqun LiMing-Jie DongHaibing DaiShanming LuRan LuoJiahui CaoFan ZhangLin MeiJianbo Yu . Application of mitochondrial miRNA-204 nanoprobes in Alzheimer's disease treatment by clearing reactive oxygen species-mediated autophagy. Chinese Chemical Letters, 2025, 36(8): 110614-. doi: 10.1016/j.cclet.2024.110614

    2. [2]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    3. [3]

      Qiang LuoJinfeng SunZhibo LiBin LiuJianxun Ding . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism. Chinese Chemical Letters, 2025, 36(7): 110433-. doi: 10.1016/j.cclet.2024.110433

    4. [4]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    5. [5]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    6. [6]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    7. [7]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    8. [8]

      Liqiang Hao Boyi Nie Ziping Wan Jianghua Qiu . The Role of SOD in Skincare: A Chemical Science Popularization Experiment. University Chemistry, 2025, 40(7): 241-248. doi: 10.12461/PKU.DXHX202409084

    9. [9]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    12. [12]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    13. [13]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    14. [14]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    15. [15]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    16. [16]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    17. [17]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    18. [18]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    19. [19]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    20. [20]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

Metrics
  • PDF Downloads(0)
  • Abstract views(22)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return