Post-modification-induced supramolecular transformation of Hopf link to macrocycle
-
* Corresponding authors.
E-mail addresses: 17110220045@fudan.edu.cn (H.-J. Feng), zhanglf705@163.com (L.-F. Zhang).
Citation:
Pan-Pan Hua, Hui-Jun Feng, Shu-Ning Lan, Francisco Aznarez, Li-Fang Zhang. Post-modification-induced supramolecular transformation of Hopf link to macrocycle[J]. Chinese Chemical Letters,
;2025, 36(6): 110684.
doi:
10.1016/j.cclet.2024.110684
C. Shi, H. Li, W. Xie, Org. Lett. 26 (2024) 6910–6914.
doi: 10.1021/acs.orglett.4c02572
Y.S. Wang, S. Bai, Y.Y. Wang, et al., Chem. Commun. 55 (2019) 13689–13692.
doi: 10.1039/c9cc07113j
Q.F. Sun, S. Sato, M. Fujita, Angew. Chem. 126 (2014) 13728–13731.
doi: 10.1002/ange.201408652
S.J. Chen, D.K. Su, C.C. Jia, et al., Chem 8 (2022) 243–252.
doi: 10.1016/j.chempr.2021.11.012
Yu. Mao, J. Ma, J. Ji, et al., Chin. Chem. Lett. 35 (2024) 109927.
doi: 10.1016/j.cclet.2024.109927
Q. Chai, L. Duan, Y. Ma, Sci. China Chem. 67 (2024) 1510–1523.
doi: 10.1007/s11426-023-1919-2
H.H. Duan, F. Cao, H.X. Hao, et al., ACS Appl. Mater. Interfaces 13 (2021) 16837–16845.
doi: 10.1021/acsami.1c01867
Y. Liu, Z. Guo, Y. Guo, et al., Chin. Chem. Lett. 34 (2023) 108531.
doi: 10.1016/j.cclet.2023.108531
F. Cui, Q. Zhang, T. Xiao, et al., Chin. Chem. Lett. 35 (2024) 110061.
doi: 10.1016/j.cclet.2024.110061
T. Feng, X. Li, Y.Y. An, et al., Angew. Chem., Int. Ed. 59 (2020) 13516–13520.
doi: 10.1002/anie.202004112
Y.S. Wang, H. Li, S. Bai, Sci. China Chem. 66 (2023) 778–782.
R. Huang, X. Wei, P. Wang, et al., Org. Lett. 26 (2024) 1405–1409.
doi: 10.1021/acs.orglett.3c04367
S.N. Lei, H. Cong, Chin. Chem. Lett. 33 (2022) 1493–1496.
doi: 10.1016/j.cclet.2021.08.068
Y. Liu, S.H. Liao, W.T. Dai, et al., Angew. Chem. Int. Ed. 62 (2023) e202217215.
doi: 10.1002/anie.202217215
P.P. Hua, H.J. Feng, X. Gao, et al., Inorg. Chem. Front. 11 (2024) 5026–5033.
doi: 10.1039/d4qi01288g
T. Chen, Y. Zhao, L.L. Dang, et al., J. Am. Chem. Soc. 145 (2023) 18036–18047.
doi: 10.1021/jacs.3c05720
W.B. Yu, F.Y. Qiu, S.T. Luo, et al., Inorg. Chem. Front. 8 (2021) 2356–2364.
doi: 10.1039/d1qi00174d
Q.S. Mu, X. Gao, Z. Cui, et al., Sci. China Chem. 66 (2023) 2885–2891.
doi: 10.1007/s11426-023-1675-0
M.M. Gan, J.Q. Liu, L. Zhang, et al., Chem. Rev. 118 (2018) 9587–9641.
doi: 10.1021/acs.chemrev.8b00119
Y. Zhou, H.-N. Zhang, Q.S. Mu, et al., Chin. J. Chem. 41 (2023) 3229–3237.
doi: 10.1002/cjoc.202300359
Y.R. Shen, X. Gao, Z. Cui, et al., Chin. J. Chem. 39 (2021) 3303–3308.
doi: 10.1002/cjoc.202100546
W.L. Shan, Y.J. Lin, F.E. Hahn, et al., Angew. Chem. Int. Ed. 58 (2019) 5882–5886.
doi: 10.1002/anie.201900556
Y. Li, G.F. Jin, Y.Y. An, et al., Chin. J. Chem. 37 (2019) 1147–1152.
doi: 10.1002/cjoc.201900348
Y.H. Song, N. Singh, J. Jung, Angew. Chem. 128 (2016) 2047–2051.
doi: 10.1002/ange.201508257
Y.Y. Zhang, F.Y. Qiu, H.T. Shi, et al., Chem. Commun. 57 (2021) 3010–3013.
doi: 10.1039/d0cc08052g
M. Koizumi, C. Dietrich-Buchecker, J.P. Sauvage, Eur. J. Org. Chem. 2004 (2004) 770–775.
doi: 10.1002/ejoc.200300572
Y.W. Zhang, Y. Lu, L.Y. Sun, et al., Angew. Chem. Int. Ed. 62 (2023) e202312323.
doi: 10.1002/anie.202312323
C.C. Yee, A.W.H. Ng, H.Y. Au-Yeung, Chem. Commun. 55 (2019) 6169–6172.
doi: 10.1039/c9cc02263e
H. Lee, P. Elumalai, N. Singh, et al., J. Am. Chem. Soc. 137 (2015) 4674–4677.
doi: 10.1021/jacs.5b02573
P.P. Hua, J.H. Bai, H.J. Feng, et al., J. Am. Chem. Soc. 146 (2024) 26427–26434.
doi: 10.1021/jacs.4c09385
Y. Zou, S.J. Bao, H. Tang, et al., Angew. Chem. Int. Ed. 63 (2024) e202410722.
doi: 10.1002/anie.202410722
L.L. Dang, Z.B. Sun, W.L. Shan, et al., Nat. Commun. 10 (2019) 2057.
doi: 10.1038/s41467-019-10075-6
S.C. Li, L.X. Cai, L.P. Zhou, et al., Sci. China Chem. 62 (2019) 713–718.
doi: 10.1007/s11426-018-9427-4
B.H. Northrop, Y.R. Zheng, K.W. Chi, Acc. Chem. Res. 42 (2009) 1554–1563.
doi: 10.1021/ar900077c
Y. Lu, H.N. Zhang, G.X. Jin, Acc. Chem. Res. 51 (2018) 2148–2158.
doi: 10.1021/acs.accounts.8b00220
X.Z. Li, L.P. Zhou, L.L. Yang, et al., Nat. Commun. 9 (2018) 547.
doi: 10.2174/1871527317666180711093538
S. Wang, Z. Huang, A. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 9573–9579.
doi: 10.1002/anie.202100441
Z. Jiang, H. Zhao, J. Wang, et al., Chin. Chem. Lett. 34 (2023) 108334.
doi: 10.1016/j.cclet.2023.108334
H. Duan, T. Yang, Q. Li, et al., Chin. Chem. Lett. 35 (2024) 108878.
doi: 10.1016/j.cclet.2023.108878
F. Zeng, L.L. Tang, H. Yu, et al., Chin. Chem. Lett. 34 (2023) 108304.
doi: 10.1016/j.cclet.2023.108304
L. Cheng, P. Tian, Q. Li, et al., CCS Chem. 3 (2021) 3608–3614.
H. Duan, F. Cao, M. Zhang, et al., Chin. Chem. Lett. 33 (2022) 2459–2463.
doi: 10.1016/j.cclet.2021.11.010
D. Chen, T. Xiao, É. Monflier, et al., Commun. Chem. 7 (2024) 88.
doi: 10.1038/s42004-024-01175-6
J. Jiao, H. Li, W. Xie, et al., Chem. Sci. 14 (2023) 11402–11409.
doi: 10.1039/d3sc02995f
X. Gao, Z. Cui, Y.R. Shen, et al., J. Am. Chem. Soc. 143 (2021) 17833–17842.
doi: 10.1021/jacs.1c09333
S.J. Hu, X.Q. Guo, L.P. Zhou, et al., J. Am. Chem. Soc. 144 (2022) 4244–4253.
doi: 10.1021/jacs.2c00760
L.X. Cai, D.N. Yan, P.M. Cheng, et al., J. Am. Chem. Soc. 143 (2021) 2016–2024.
doi: 10.1021/jacs.0c12064
Y.W. Zhang, S. Bai, Y.Y. Wang, et al., J. Am. Chem. Soc. 142 (2020) 13614–13621.
doi: 10.1021/jacs.0c06470
L.L. Dang, T.T. Zhang, T. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202301516.
doi: 10.1002/anie.202301516
J.H. Jo, N. Singh, D. Lim, et al., Inorg. Chem. 56 (2017) 8430–8438.
doi: 10.1021/acs.inorgchem.7b01101
T. Feng, X. Li, Y.Y. An, Angew. Chem. Int. Ed. 59 (2020) 13516–13520.
doi: 10.1002/anie.202004112
L.L. Dang, T.T. Zhang, T. Chen, et al., Org. Chem. Front. 9 (2022) 5505–5515.
doi: 10.1039/d2qo01107g
Y. Takezawa, S. Yoneda, J.L. Duprey, et al., Chem. Sci. 7 (2016) 3006–3010.
doi: 10.1039/C6SC00383D
S. Chen, L.J. Chen, H.B. Yang, et al., J. Am. Chem. Soc. 134 (2012) 13596–13599.
doi: 10.1021/ja306748k
Y. Sun, C. Chen, J. Liu, et al., Chem. Soc. Rev. 49 (2020) 3889–3919.
doi: 10.1039/d0cs00038h
H.N. Zhang, W.B. Yu, Y.J. Lin, et al., Angew. Chem., Int. Ed. 60 (2021) 15466–15471.
doi: 10.1002/anie.202103264
H. Tang, H.N. Zhang, X. Gao, et al., J. Am. Chem. Soc. 146 (2024) 16020–16027.
doi: 10.1021/jacs.4c03019
F.G. Zhang, Z. Chen, X. Tang, et al., Chem. Rev. 121 (2021) 14555–14593.
doi: 10.1021/acs.chemrev.1c00611
G.X. Xu, X. Bai, Q. Dang, et al., Acc. Chem. Res. 53 (2020) 773–781.
doi: 10.1021/acs.accounts.9b00604
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Jinshuai Zheng , Junfeng Niu , Crispin Halsall , Yadi Guo , Peng Zhang , Linke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Xinguo Mao , Shuo Zhang , Qiang Shi , Hua Cheng , Leyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645