Citation: Kai Zhu, Lei Yang, Yang Yang, Yanqi Wu, Fengzhi Zhang. Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes[J]. Chinese Chemical Letters, ;2025, 36(7): 110678. doi: 10.1016/j.cclet.2024.110678 shu

Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes

    * Corresponding author.
    E-mail address: zhangfengzhi@hmc.edu.cn (F. Zhang).
  • Received Date: 11 August 2024
    Revised Date: 18 November 2024
    Accepted Date: 25 November 2024
    Available Online: 26 November 2024

Figures(34)

  • Planar chiral cyclophanes are a type of structurally intriguing organic molecules, which have found increasingly applications in the field of biologically active compounds, asymmetric catalysis, and optically pure materials. As such, significant efforts in the development of new methods to build up enantioenriched cyclophanes in a precise manner have attracted increased attention in recent years. Among the plethora of reported synthetic strategies, catalytic enantioselective method has emerged as one of the most straightforward and efficient ways to deliver optically pure planar chiral cyclophanes. In this review, the recent progress in catalytic enantioselective reactions for the synthesis of planar chiral cyclophanes will be discussed, which would stimulate the research interest of chemists for the discovery of novel asymmetric strategies for the preparation of valuable and previously difficult-to-access chiral molecules.
  • 加载中
    1. [1]

      Y. Cetinkaya, P. Falk, C.G. Mayhall, Clin. Microbiol. Rev. 13 (2000) 686–707.  doi: 10.1128/CMR.13.4.686

    2. [2]

      H. Nakamura, E.E. Schultz, E.P. Balskus, Nat. Chem. Biol. 13 (2017) 916–921.  doi: 10.1038/nchembio.2421

    3. [3]

      K.Y. Chen, H.Q. Wang, Y. Yuan, et al., Angew. Chem. Int. Ed. 62 (2023) e202307602.

    4. [4]

      K.E. Malterud, T. Anthonsen, J. Hjortås, Tetrahedron Lett. 17 (1976) 3069–3072.

    5. [5]

      T. Gulder, P.S. Baran, Nat. Prod. Rep. 29 (2012) 899–934.  doi: 10.1039/c2np20034a

    6. [6]

      J. Li, J.X. Sun, H.Y. Yu, et al., Chin. Chem. Lett. 24 (2013) 521–523.
       

    7. [7]

      P.J. Pye, K. Rossen, R.A. Reamer, et al., J. Am. Chem. Soc. 119 (1997) 6207–6208.

    8. [8]

      H. Liang, W. Guo, J. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202204926.

    9. [9]

      S.V. Kumar, P.J. Guiry, Angew. Chem. Int. Ed. 61 (2022) e202205516.

    10. [10]

      J.F. Schneider, R. Fröhlich, J. Paradies, Isr. J. Chem. 52 (2012) 76–91.  doi: 10.1002/ijch.201100082

    11. [11]

      Y.W. Huo, P.P. Shen, W.Z. Duan, et al., Chin. Chem. Lett. 29 (2018) 1359–1362.  doi: 10.1016/j.cclet.2017.12.005

    12. [12]

      M. Cakici, Z.G. Gu, M. Nieger, et al., Chem. Commun. 51 (2015) 4796–4798.

    13. [13]

      Y. Morisaki, M. Gon, T. Sasamori, et al., J. Am. Chem. Soc. 136 (2014) 3350–3353.  doi: 10.1021/ja412197j

    14. [14]

      C.H. Chen, W.H. Zheng, Org. Lett. 23 (2021) 5554–5558.  doi: 10.1021/acs.orglett.1c01924

    15. [15]

      Z.M. Fan, W.T. Sun, Y. Yang, et al., Chin. Chem. Lett. 34 (2023) 107729.  doi: 10.1016/j.cclet.2022.08.009

    16. [16]

      R.S. Cahn, C.K. Ingold, V. Prelog, Experientia 12 (1956) 81–94.

    17. [17]

      E.L. Eliel, S. H, Wilen in Stereochemistry of Organic Compounds, Wiley, Hoboken, 1994.

    18. [18]

      R. López, C. Palomo, Angew. Chem. Int. Ed. 61 (2022) e202113504.

    19. [19]

      Z. Hassan, E. Spuling, D.M. Knoll, et al., Angew. Chem. Int. Ed. 59 (2020) 2156–2170.  doi: 10.1002/anie.201904863

    20. [20]

      Z. Hassan, E. Spuling, D.M. Knoll, et al., Chem. Soc. Rev. 47 (2018) 6947–6963.  doi: 10.1039/c7cs00803a

    21. [21]

      S. Felder, S. Wu, J. Brom, et al., Chirality 33 (2021) 506–527.  doi: 10.1002/chir.23335

    22. [22]

      G. Yang, J. Wang, Angew. Chem. Int. Ed. 63 (2024) e202412805.  doi: 10.1002/anie.202412805

    23. [23]

      K. Tanaka, Bull. Chem. Soc. Jpn. 91 (2018) 187–194.  doi: 10.1246/bcsj.20170346

    24. [24]

      K. Tanaka, H. Sagae, K. Toyoda, et al., J. Am. Chem. Soc. 129 (2007) 1522–1523.  doi: 10.1021/ja0679127

    25. [25]

      K. Tanaka, H. Sagae, K. Toyoda, et al., Tetrahedron 64 (2008) 831–846.  doi: 10.1016/j.tet.2007.10.085

    26. [26]

      T. Shibata, T. Uchiyama, K. Endo, Org. Lett. 11 (2009) 3906–3908.  doi: 10.1021/ol9014893

    27. [27]

      T. Araki, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 52 (2013) 5617–5621.  doi: 10.1002/anie.201300696

    28. [28]

      Y. Aida, J. Nogami, H. Sugiyama, et al., Chem. Eur. J. 26 (2020) 12579–12588.  doi: 10.1002/chem.202001450

    29. [29]

      Y. Aida, J. Nogami, Y. Nagashima, et al., Chem. Sci. 14 (2023) 3963–3972.

    30. [30]

      K. Tanaka, T. Hori, T. Osaka, et al., Org. Lett. 9 (2007) 4881–4884.  doi: 10.1021/ol702242x

    31. [31]

      T. Hori, Y. Shibata, K. Tanaka, Tetrahedron: Asymmetry 21 (2010) 1303–1306.

    32. [32]

      K. Mori, K. Ohmori, K. Suzuki, Angew. Chem. Int. Ed. 48 (2009) 5638–5641.  doi: 10.1002/anie.200901974

    33. [33]

      S. Jung, Y. Kitajima, Y. Ueda, et al., Synlett. 27 (2016) 1521–1526.

    34. [34]

      M.Q. Salih, C.M. Beaudry, Org. Lett. 15 (2013) 4540–4543.  doi: 10.1021/ol402096k

    35. [35]

      S. Wei, L.Y. Chen, J. Li, ACS Catal. 13 (2023) 7450–7456.  doi: 10.1021/acscatal.3c01147

    36. [36]

      G. Islas-Gonzalez, M. Bois-Choussy, J. Zhu, Org. Biomol. Chem. 1 (2003) 30–32.

    37. [37]

      Q. Ding, Q. Wang, H. He, et al., Org. Lett. 19 (2017) 1804–1807.  doi: 10.1021/acs.orglett.7b00570

    38. [38]

      S.Z. Yu, G.S. Shen, F.Q. He, et al., Chem. Commun. 58 (2022) 7293–7296.  doi: 10.1039/d2cc01690g

    39. [39]

      G. Yang, Y. He, T. Wang, et al., Angew. Chem. Int. Ed. 63 (2023) e202316739.

    40. [40]

      J. Wang, M. Wang, Y. Wen, et al., Org. Lett. 26 (2024) 1040–1045.  doi: 10.1021/acs.orglett.3c04200

    41. [41]

      X. Lv, F. Su, H. Long, et al., Nat. Commun. 15 (2024) 958.

    42. [42]

      C. Gagnon, E. Godin, C. Minozzi, et al., Science 367 (2020) 917–921.  doi: 10.1126/science.aaz7381

    43. [43]

      L.F. Tan, M. Sun, H.X. Wang, et al., Nat. Synth. 2 (2023) 1222–1231.  doi: 10.1038/s44160-023-00360-0

    44. [44]

      K. Kanda, K. Endo, T. Shibata, Org. Lett. 12 (2010) 1980–1983.  doi: 10.1021/ol100444u

    45. [45]

      K. Kanda, R. Hamanaka, K. Endo, et al., Tetrahedron 68 (2012) 1407–1416.  doi: 10.1016/j.tet.2011.12.031

    46. [46]

      K. Kanda, T. Koike, K. Endo, et al., Chem. Commun. (2009) 1870–1872.  doi: 10.1039/b818904h

    47. [47]

      M.L. Delcourt, S. Felder, E. Benedetti, et al., ACS Catal. 8 (2018) 6612–6616.  doi: 10.1021/acscatal.8b01872

    48. [48]

      M.L. Delcourt, S. Felder, S. Turcaud, et al., J. Org. Chem. 84 (2019) 5369–5382.  doi: 10.1021/acs.joc.9b00372

    49. [49]

      Z. Dong, J. Li, T. Yao, et al., Angew. Chem. Int. Ed. 62 (2023) e202315603.

    50. [50]

      D. Wang, Y.B. Shao, Y. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202201064.

    51. [51]

      K. Rossen, P.J. Pye, A. Maliakal, et al., J. Org. Chem. 62 (1997) 6462–6463.  doi: 10.1021/jo971300a

    52. [52]

      D.C. Braddock, I.D. MacGilp, B.G. Perry, J. Org. Chem. 67 (2002) 8679–8681.  doi: 10.1021/jo020451x

    53. [53]

      K. Mori, H. Kishi, T. Akiyama, Synthesis 49 (2017) 365–370.

    54. [54]

      P. Dorizon, C. Martin, J.C. Daran, et al., Tetrahedron Asymmetry 12 (2001) 2625–2630.

    55. [55]

      M.L. Delcourt, S. Turcaud, E. Benedetti, et al., Adv. Synth. Catal. 358 (2016) 1213–1218.  doi: 10.1002/adsc.201501153

    56. [56]

      M.L. Delcourt, S. Felder, S. Turcaud, et al., J. Org. Chem. 84 (2019) 5369–5382.  doi: 10.1021/acs.joc.9b00372

    57. [57]

      C. Zippel, Z. Hassan, A.Q. Parsa, et al., Adv. Synth. Catal. 363 (2021) 2861–2865.  doi: 10.1002/adsc.202001536

    58. [58]

      Y. Zhao, H. Wang, B. Wu, et al., Org. Chem. Front. 6 (2019) 3956–3960.  doi: 10.1039/c9qo01011d

    59. [59]

      Y. Zhao, Y.X. Ding, B. Wu, et al., J. Org. Chem. 86 (2021) 10788–10798.  doi: 10.1021/acs.joc.1c01011

    60. [60]

      Y. Zhao, X.Q. Wang, Y.J. Yu, et al., J. Org. Chem. 86 (2021) 1262–1272.  doi: 10.1021/acs.joc.0c02509

    61. [61]

      S. Yu, H. Bao, D. Zhang, et al., Nat. Commun. 14 (2023) 5239.

    62. [62]

      J. Li, C. Zhao, ACS Catal. 13 (2023) 14155–14162.  doi: 10.1021/acscatal.3c03718

    63. [63]

      J. Li, Z. Dong, Y. Chen, et al., Nat. Commun. 15 (2024) 2338.

    64. [64]

      V. Dočekal, F. Koucký, I. Císařová, et al., Nat. Commun. 15 (2024) 3090.

    65. [65]

      D. Zhu, T. Mu, Z.L. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202318625.

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    3. [3]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    4. [4]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    5. [5]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    6. [6]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    7. [7]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    10. [10]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    11. [11]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    12. [12]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    17. [17]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    18. [18]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    19. [19]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    20. [20]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return