Citation: Hao Chang, Renzhong Qiao, Chao Li. Recent advances in functionalized macrocyclic polyamines for medicine applications[J]. Chinese Chemical Letters, ;2025, 36(7): 110675. doi: 10.1016/j.cclet.2024.110675 shu

Recent advances in functionalized macrocyclic polyamines for medicine applications

    * Corresponding authors.
    E-mail addresses: qiao_group@163.com (R. Qiao), lichao@mail.buct.edu.cn (C. Li).
  • Received Date: 22 July 2024
    Revised Date: 21 November 2024
    Accepted Date: 25 November 2024
    Available Online: 26 November 2024

Figures(16)

  • Macrocyclic polyamines are excellent chelating agents with the advantage of forming highly stable complexes. They offer the flexibility to adjust the coordination environment through functionalization. making them valuable in numerous applications owing to their unique chemical and biological characteristics. This review summarizes the use of macrocyclic polyamines as carriers and molecular platforms of targeted drugs for medical applications. The significance and innovative design of these original approaches are dissected from the unique perspective of diverse mechanisms, such as iron depletion, metallo-β-lactamases inhibitors, intracellular ATP depletion, non-viral gene vector, DNA/RNA syntheses inhibitors and theranostics agent. Of interest are the metal complex of macrocyclic polyamines, which is usually a double-edged sword as dealing with endogenous macromolecular targets, especially DNA. These excellent cases will help to understand the typical mechanism in drug design based on macrocyclic polyamines, and achieve actual applications in medicine.
  • 加载中
    1. [1]

      L.J. Marton, A.E. Pegg, Annu. Rev. Pharmacol. 35 (1995) 55-91.  doi: 10.1146/annurev.pa.35.040195.000415

    2. [2]

      H.M. Wallace, A.V. Fraser, A. Hughes, Biochem. J. 376 (2003) 1-14.

    3. [3]

      E.W. Gerner, F.L. Meyskens, Nat. Rev. Cancer. 4 (2004) 781-792.  doi: 10.1038/nrc1454

    4. [4]

      H. Tabor, C.W. Tabor, Anal. Biochem. 274 (1999) 150-150.  doi: 10.1006/abio.1999.4227

    5. [5]

      U. Bachrach, Plant Physiol. Bioch. 48 (2010) 490-495.

    6. [6]

      A. Raina, J. Janne, Med. Biol. 53 (1975) 121-147.

    7. [7]

      P. Scherer, H. Kneifel, J. Bacteriol. 154 (1983) 1315-1322.  doi: 10.1128/jb.154.3.1315-1322.1983

    8. [8]

      C.W. Tabor, H. Tabor, Annu. Rev. Biochem. 45 (1976) 285-306.  doi: 10.1146/annurev.bi.45.070176.001441

    9. [9]

      C. Kahana, J. Biol. Chem. 293 (2018) 18730-18735.  doi: 10.1074/jbc.tm118.003339

    10. [10]

      A.E. Pegg, J. Biol. Chem. 291 (2016) 14904-14912.  doi: 10.1074/jbc.R116.731661

    11. [11]

      L. Miller-Fleming, V. Olin-Sandoval, K. Campbell, M. Ralser, J. Mol. Biol. 427 (2015) 3389-3406.  doi: 10.1016/j.jmb.2015.06.020

    12. [12]

      G. Iacomino, G. Picariello, L. D'Agostino, Biochim. Biophys. Acta 1823 (2012) 1745-1755.  doi: 10.1016/j.bbamcr.2012.05.033

    13. [13]

      X.Y. Liang, P.J. Sadler, Chem. Soc. Rev. 33 (2004) 246-266.  doi: 10.1039/B313659K

    14. [14]

      J. Wahsner, E.M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chem. Rev. 119 (2018) 957-1057.

    15. [15]

      S.N.M. Chilla, C. Henoumont, L.V. Elst, R.N. Muller, S. Laurent, Isr. J. Chem. 57 (2017) 800-808.  doi: 10.1002/ijch.201700024

    16. [16]

      J.J. Christensen, D.J. Eatough, R.M. Izatt, Chem. Rev. 74 (1974) 351-384.  doi: 10.1021/cr60289a003

    17. [17]

      L.F. Lindoy, K.M. Park, S.S. Lee, Chem. Soc. Rev. 42 (2013) 1713-1727.  doi: 10.1039/c2cs35218d

    18. [18]

      R.E. Mewis, S.J. Archibald, Coord. Chem. Rev. 254 (2010) 1686-1712.  doi: 10.1016/j.ccr.2010.02.025

    19. [19]

      F. Liang, S. Wan, Z. Li, et al., Curr. Med. Chem. 13 (2006) 711-727.  doi: 10.2174/092986706776055706

    20. [20]

      P. Lejault, K. Duskova, C. Bernhard, et al., Eur. J. Org. Chem. 2019 (2019) 6146-6157.  doi: 10.1002/ejoc.201900870

    21. [21]

      H. Stetter, K.H. Mayer, Chem. Ber. 94 (1961) 1410-1416.  doi: 10.1002/cber.19610940602

    22. [22]

      B. Bosnich, M. Tobe, G. Webb, Inorg. Chem. 4 (1965) 1109-1112.  doi: 10.1021/ic50030a004

    23. [23]

      N. Curtis, Coord. Chem. Rev. 3 (1968) 3-47.  doi: 10.1016/S0010-8545(00)80104-6

    24. [24]

      S. Shinoda, Chem. Soc. Rev. 42 (2013) 1825-1835.

    25. [25]

      L.M. De Leon-Rodriguez, Z. Kovacs, Bioconjug. Chem. 19 (2008) 391-402.  doi: 10.1021/bc700328s

    26. [26]

      E.J.T. Kimura, Tetrahedron 48 (1992) 6175-6217.

    27. [27]

      L.J. ZOMPA, Inorg. Chem. 17 (1978) 2531-2536.  doi: 10.1021/ic50187a039

    28. [28]

      T.W. Bell, H.J. Choi, W. Harte, J. Am. Chem. Soc. 108 (1986) 7427-7428.  doi: 10.1021/ja00283a058

    29. [29]

      E.S. Lee, Z. Gao, Y.H. Bae, J. Control Release 132 (2008) 164-170.

    30. [30]

      D.H. Busch, K. Farmery, V. Goedken, V. Katovic, N. Tokel, Bioinorg. Chem. 100 (1971) 44-78.  doi: 10.1021/ba-1971-0100.ch003

    31. [31]

      J.P. Collman, P.W. Schneider, Inorg. Chem. 5 (1965) 1380-1384.

    32. [32]

      I. Rostášová, M. Vilková, Z. Vargová, et al., New J. Chem. 41 (2017) 7253-7259.  doi: 10.1039/C7NJ00254H

    33. [33]

      R.J. Motekaitis, B.E. Rogers, D.E. Reichert, A.E. Martell, M.J. Welch, Inorg. Chem. 35 (1996) 3821-3827.

    34. [34]

      E.T. Clarke, A.E. Martell, Inorg. Chim. Acta 190 (1991) 27-36.  doi: 10.1016/S0020-1693(00)80228-5

    35. [35]

      E. Mocchegiani, R. Giacconi, M. Malavolta, Trends Mol. Med. 14 (2008) 419-428.  doi: 10.1016/j.molmed.2008.08.002

    36. [36]

      T. Mattia, M.L. Massimino, D.M. Agnese, A. Elisa, S. Enzo, Front. Neurosci 11 (2017) 3.

    37. [37]

      L. Fouani, S.V. Menezes, M. Paulson, D.R. Richardson, Z. Kovacevic, Pharmacol. Res. 115 (2017) 275-287.

    38. [38]

      A. Khan, P. Singh, A. Srivastava, Microbiol. Res. 212-213 (2018) 103-111.  doi: 10.5958/2277-4912.2018.00019.x

    39. [39]

      T.A. Rouault, W.H. Tong, Trends. Genet. 24 (2008) 398-407.  doi: 10.1016/j.tig.2008.05.008

    40. [40]

      K. Richardson, Crit. Rev. Oncol. Hemat. 42 (2002) 65-78.

    41. [41]

      L.M. Bystrom, M.L. Guzman, S. Rivella, Antioxid. Redox. Sign. 20 (2014) 1917-1924.  doi: 10.1089/ars.2012.5014

    42. [42]

      G.M. Brittenham, Alcohol 30 (2003) 151-158.

    43. [43]

      V.M. Nurchi, R. Cappai, K. Chand, et al., Dalton Trans. 48 (2019) 16167-16183.  doi: 10.1039/c9dt02905b

    44. [44]

      N.T.V. Le, D.R. Richardson, Blood 104 (2004) 2967-2975.

    45. [45]

      J. Blatt, S. Stitely, Cancer Res. 47 (1987) 1749-1750.

    46. [46]

      H.M. Lederman, A. Cohen, J.W. Lee, M.H. Freedman, E.W. Gelfand, Blood 64 (1984) 748-753.

    47. [47]

      K.R. Bridges, A. Cudkowicz, J. Biol. Chem. 259 (1984) 12970-12977.

    48. [48]

      H.S. Chong, X. Ma, H. Lee, et al., J. Med. Chem. 51 (2008) 2208–2215.  doi: 10.1021/jm701307j

    49. [49]

      S. Wang, S. Zhang, L. Ke, et al., Bioorg. Med. Chem. Lett. 28 (2018) 117-121.  doi: 10.5539/jmr.v10n6p117

    50. [50]

      R.C. Scarrow, K.N. Raymond, Inorg. Chem. 27 (1988) 4140-4149.  doi: 10.1021/ic00296a013

    51. [51]

      M. Meyer, J.R. Telford, S.M. Cohen, D.J. White, K.N. Raymond, J. Am. Chem. Soc. 119 (1997) 10093-10103.

    52. [52]

      E.J. Werner, S. Avedano, M. Botta, et al., J. Am. Chem. Soc. 129 (2007) 1870-1871.  doi: 10.1021/ja068026z

    53. [53]

      J.M. Harrington, S. Chittamuru, S. Dhungana, et al., Inorg. Chem. 49 (2010) 8208-8221.  doi: 10.1021/ic902595c

    54. [54]

      X. Liu, X. Dong, C. He, et al., Bioorg. Chem. 96 (2020) 103574.

    55. [55]

      Z.D. Liu, R.C. Hider, Coord. Chem. Rev. 232 (2002) 151-171.

    56. [56]

      T. Zhou, K. Chen, L.M. Kong, et al., Bioorg. Med. Chem. Lett. 28 (2018) 2504-2512.

    57. [57]

      K. Akira, H. Yasushi, H. Manabu, et al., Heterocycles 55 (2001) 2171-2187.

    58. [58]

      T.M. Hoette, R.J. Abergel, J. Xu, R.K. Strong, K.N. Raymond, J. Am. Chem. Soc. 130 (2008) 17584-17592.  doi: 10.1021/ja8074665

    59. [59]

      D.G. Workman, M. Hunter, L.G. Dover, D. Tetard, J. Inorg. Biochem. 160 (2016) 49-58.

    60. [60]

      M. Seitz, M.D. Pluth, K.N. Raymond, Inorg. Chem. 46 (2007) 351–353.  doi: 10.1021/ic0614869

    61. [61]

      K.F. Kong, L. Schneper, K. Mathee, APMIS 118 (2010) 1-36.  doi: 10.1111/j.1600-0463.2009.02563.x

    62. [62]

      K. Bush, P.A. Bradford, Nat. Rev. Microbiol. 17 (2019) 295-306.  doi: 10.1038/s41579-019-0159-8

    63. [63]

      B. Karen, Antimicrob. Agents Ch. 62 (2018) 1128.

    64. [64]

      S.S. Jalde, H.K. Choi, J. Microbiol. 58 (2020) 633-647.  doi: 10.1007/s12275-020-0285-z

    65. [65]

      K.A. Toussaint, J.C. Gallagher, Ann. Pharmacother. 49 (2018) 86-98.

    66. [66]

      A.M. Somboro, D. Tiwari, L.A. Bester, et al., J. Antimicrob. Chemother. 70 (2015) 1594-1596.  doi: 10.1093/jac/dku538

    67. [67]

      E. Boros, C.L. Ferreira, J.F. Cawthray, et al., J. Am. Chem. Soc. 132 (2010) 15726-15733.  doi: 10.1021/ja106399h

    68. [68]

      Y. Zhang, H. Hong, J.W. Engle, et al., PLoS One 6 (2011) e28005.  doi: 10.1371/journal.pone.0028005

    69. [69]

      A.M. Somboro, D.G. Amoako, J.O. Sekyere, et al., Appl. Environ. Microbiol. 85 (2019) e02077-18.

    70. [70]

      S. McOyi, D.G. Amoako, A.M. Somboro, H.M. Khumalo, R.B. Khan, J. Biochem. Mol. Toxicol. 34 (2020) e22607.

    71. [71]

      N. Tsotetsi, D.G. Amoako, A.M. Somboro, H.M. Khumalo, R.B. Khan, Cytotechnology 72 (2020) 785-796.  doi: 10.1007/s10616-020-00422-7

    72. [72]

      R. Azumah, J. Dutta, A.M. Somboro, M. Ramtahal, T. Govender, J. Appl. Microbiol. 120 (2016) 860-867.  doi: 10.1111/jam.13085

    73. [73]

      S.B. Falconer, S.A. Reid-Yu, A.M. King, et al., ACS Infect. Dis. 1 (2015) 533-543.  doi: 10.1021/acsinfecdis.5b00033

    74. [74]

      F.M. Klingler, T.A. Wichelhaus, D. Frank, et al., J. Med. Chem. 58 (2015) 3626-3630.  doi: 10.1021/jm501844d

    75. [75]

      E. Zhang, M.M. Wang, S.C. Huang, et al., Bioorg. Med. Chem. Lett. 28 (2018) 214-221.

    76. [76]

      R.A. Cairns, I.S. Harris, T.W. Mak, Nat. Rev. Cancer 11 (2011) 85-95.  doi: 10.1038/nrc2981

    77. [77]

      R. Mo, T. Jiang, R. DiSanto, W. Tai, Z. Gu, Nat. Commun. 5 (2014) 3364.

    78. [78]

      X.R. Song, S.H. Li, H. Guo, et al., Adv. Sci. 5 (2018) 1801201.

    79. [79]

      B. Dietrich, T.M. Fyles, J.M. Lehn, L.G. Pease, D.L. Fyles, J. Chem Soc., Chem. Commun. (1978) 934-936.

    80. [80]

      M.W. Hosseini, J.M. Lehn, L. Maggiora, K.B. Mertes, M.P. Mertes, J. Am. Chem. Soc. 109 (1987) 537-544.  doi: 10.1021/ja00236a036

    81. [81]

      M.W. Hosseini, J.M. Lehn, M.P. Mertes, Helv. Chim. Acta 66 (1983) 2454-2466.  doi: 10.1002/hlca.19830660811

    82. [82]

      A. Bencini, A. Bianchi, E. Garcia-Espana, et al., Bioorg. Chem. 20 (1992) 8-29.

    83. [83]

      B. Frydman, S. Bhattacharya, A. Sarkar, et al., J. Med. Chem. 47 (2004) 1051-1059.

    84. [84]

      W. Mar, G.T. Tan, G.A. Cordell, et al., J. Nat. Prod. 54 (1991) 1531-1542.  doi: 10.1021/np50078a007

    85. [85]

      Y. Yarden, M.X. Sliwkowski, Nat. Rev. Mol. Cell. Biol. 2 (2001) 127-137.

    86. [86]

      N.E. Hynes, H.A. Lane, Nat. Rev. Cancer 5 (2005) 341-354.  doi: 10.1038/nrc1609

    87. [87]

      F. Ciardiello, G. Tortora, N. Engl. J. Med. 358 (2008) 1160-1174.

    88. [88]

      R. Roskoski, Pharmacol. Res. 68 (2013) 68-94.

    89. [89]

      J. Mendelsohn, J. Baselga, J. Clin. Oncol. 21 (2003) 2787-2799.

    90. [90]

      M.A. Lemmon, J. Schlessinger, Cell 141 (2010) 1117-1134.

    91. [91]

      D. Lichosyt, P. Dydio, J. Jurczak, Chem. Eur. J. 22 (2016) 17673-17680.  doi: 10.1002/chem.201603555

    92. [92]

      X. Wang, J. Liu, W. Zhang, et al., ACS Med. Chem. Lett. 7 (2016) 1044-1049.  doi: 10.1021/acsmedchemlett.6b00221

    93. [93]

      A.L. McIver, W. Zhang, Q. Liu, et al., ChemMedChem 12 (2017) 207-213.  doi: 10.1002/cmdc.201600589

    94. [94]

      Y. Ju, J. Wu, X. Yuan, et al., J. Med. Chem. 61 (2018) 11372-11383.  doi: 10.1021/acs.jmedchem.8b01612

    95. [95]

      Q. Ryan, A. Ibrahim, M.H. Cohen, et al., Oncologist 13 (2008) 1114-1119.  doi: 10.1634/theoncologist.2008-0816

    96. [96]

      A.K. Tiwari, K. Sodani, C.L. Dai, C. R Ashby, Z.S. Chen, Curr. Pharm. Biotechno. 12 (2011) 570-594.

    97. [97]

      M.M. Gottesman, I.H. Pastan, J. Natl. Cancer Inst. 107 (2015) djv222.  doi: 10.1093/jnci/djv222

    98. [98]

      D.S. Martin, D. Spriggs, J.A. Koutcher, Apoptosis 6 (2001) 125-131.

    99. [99]

      E. Batrakova, S. Li, W. Elmquist, et al., Br. J. Cancer 85 (2001) 1987-1997.

    100. [100]

      Q. Guo, Y. Liu, Z. Wang, et al., Acta Biomater. 122 (2021) 343-353.

    101. [101]

      Q. Guo, Y. Liu, G. Mu, et al., Biomater. Sci. 8 (2020) 5638-5646.  doi: 10.1039/d0bm01001d

    102. [102]

      J. Gao, Z. Wang, Q. Guo, et al., Theranostics 12 (2022) 1286-1302.  doi: 10.7150/thno.67543

    103. [103]

      Z.R. Yang, H.F. Wang, J. Zhao, et al., Cancer Gene Ther. 14 (2007) 599-615.  doi: 10.1038/sj.cgt.7701054

    104. [104]

      R. Niven, R. Pearlman, T. Wedeking, et al., J. Pharm. Sci. 87 (1998) 1292-1299.

    105. [105]

      R. Mohammadinejad, A. Dehshahri, V. Sagar Madamsetty, et al., J. Control Release 325 (2020) 249-275.

    106. [106]

      L.M.P. Vermeulen, J.C. Fraire, L. Raes, et al., Int. J. Mol. Sci. 19 (2018) 2400.  doi: 10.3390/ijms19082400

    107. [107]

      D.C. Chang, Y.M. Zhang, J. Zhang, Y.H. Liu, X.Q. Yu, RSC Adv. 7 (2017) 18681-18689.

    108. [108]

      Y.M. Zhang, D.C. Chang, J. Zhang, Y.H. Liu, X.Q. Yu, Bioorg. Med. Chem. 23 (2015) 5756-5763.

    109. [109]

      H.J. Wang, X. He, Y. Zhang, et al., RSC Adv. 5 (2015) 59417-59427.

    110. [110]

      H.J. Wang, Y.H. Liu, J. Zhang, et al., Biomater. Sci. 2 (2014) 1460-1470.

    111. [111]

      B. Wang, W.J. Yi, J. Zhang, et al., Bioorg. Med. Chem. Lett. 24 (2014) 1771-1775.

    112. [112]

      Z. Huang, Y.H. Liu, Y.M. Zhang, et al., Org. Biomol. Chem. 13 (2015) 620-630.

    113. [113]

      W.J. Yi, X.C. Yu, B. Wang, et al., Chem. Commun. 50 (2014) 6454-6457.

    114. [114]

      Z. Huang, Y.M. Zhang, Q. Cheng, et al., J. Mater. Chem. B 4 (2016) 5575-5584.

    115. [115]

      Q.F. Zhang, B. Wang, D.X. Yin, et al., RSC Adv. 4 (2014) 59164-59174.

    116. [116]

      Q. Liu, W.J. Yi, Y.M. Zhang, et al., Chem. Biolo. Drug Des. 82 (2013) 376-383.  doi: 10.1111/cbdd.12159

    117. [117]

      C.H. Jones, C.K. Chen, A. Ravikrishnan, S. Rane, B.A. Pfeifer, Mol. Pharm. 10 (2013) 4082-4098.  doi: 10.1021/mp400467x

    118. [118]

      Y.M. Zhang, Z. Huang, J. Zhang, et al., Biomater. Sci. 5 (2017) 718-729.

    119. [119]

      R.M. Zhao, Y. Guo, H.Z. Yang, J. Zhang, X.Q. Yu, New J. Chem. 45 (2021) 13549-13557.  doi: 10.1039/d1nj02115j

    120. [120]

      Y.M. Zhang, J. Zhang, Y.H. Liu, et al., RSC Adv. 10 (2020) 39842-39853.  doi: 10.1039/d0ra08027f

    121. [121]

      Q.Y. Yu, Y. Guo, J. Zhang, Z. Huang, X.Q. Yu, J. Mater. Chem. B 7 (2019) 451-459.  doi: 10.1039/c8tb02414f

    122. [122]

      Y. Guo, Q.Y. Yu, J. Zhang, et al., New J. Chem. 43 (2019) 16138-16147.  doi: 10.1039/c9nj03242h

    123. [123]

      Z. Huang, Y.P. Xiao, Y. Guo, et al., Eur. Polym. J. 170 (2022) 111153.

    124. [124]

      Z. Chen, S. Liu, W. Liu, et al., ACS Biomater. Sci. Eng. 7 (2021) 5678-5689.  doi: 10.1021/acsbiomaterials.1c01115

    125. [125]

      X.Y. Sun, Y.X. Liang, Y.N. Gao, et al., J. Mater. Chem. B 11 (2023) 8943-8955.  doi: 10.1039/d3tb01282d

    126. [126]

      Q. Wang, X.Y. Liu, F. Tang, Z.L. Lu, Chin. Sci. Bull. 67 (2022) 2298-2317.  doi: 10.1360/tb-2022-0216

    127. [127]

      H.Z. Yang, J. Zhang, Y. Guo, L. Pu, X.Q. Yu, ACS Appl. Bio. Mater. 4 (2021) 5717-5726.  doi: 10.1021/acsabm.1c00484

    128. [128]

      L.L. Ma, M.X. Liu, X.Y. Liu, et al., J. Mater. Chem. B 8 (2020) 3869-3879.  doi: 10.1039/d0tb00321b

    129. [129]

      X.Y. Liu, J.B. Yang, C.Y. Wu, et al., J. Mater. Chem. B 10 (2022) 945-957.  doi: 10.1039/d1tb02352g

    130. [130]

      C. Li, H. Tian, N. Rong, et al., Biomacromolecules 12 (2011) 298-305.  doi: 10.1021/bm100819z

    131. [131]

      D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, T. Kissel, Biomaterials 24 (2003) 1121-1131.

    132. [132]

      S. Choksakulnimitr, S. Masuda, H. Tokuda, Y. Takakura, M. Hashida, J. Control. Release 34 (1995) 233-241.

    133. [133]

      M. Metzke, N. O'Connor, S. Maiti, E. Nelson, Z. Guan, Angew. Chem. Int. Ed. 117 (2005) 6687-6691.  doi: 10.1002/ange.200501944

    134. [134]

      L. Li, F. Zhao, B. Zhao, et al., Macromol. Biosci. 15 (2015) 912-926.  doi: 10.1002/mabi.201400518

    135. [135]

      A.L. Lewis, Z.L. Cumming, H.H. Goreish, et al., Biomaterials 22 (2001) 99-111.

    136. [136]

      C. Ma, J. Zhang, L. Guo, et al., Mol. Pharm. 13 (2016) 47-54.  doi: 10.1021/acs.molpharmaceut.5b00396

    137. [137]

      C. Ma, X. Zhang, C. Du, et al., Bioconjug. Chem. 27 (2016) 1005-1012.  doi: 10.1021/acs.bioconjchem.6b00048

    138. [138]

      J. Luten, J. Van Steenis, R. Van Someren, et al., J. Control. Release 89 (2003) 483-497.

    139. [139]

      Y.J. Jun, J.H. Kim, S.J. Choi, et al., Bioorg. Med. Chem. Lett. 17 (2007) 2975-2978.

    140. [140]

      H.K. de Wolf, J. Luten, C.J. Snel, et al., J. Control. Release 109 (2005) 275-287.

    141. [141]

      C. Li, C. Ma, P. Xu, et al., J. Phys. Chem. B 117 (2013) 7857-7867.  doi: 10.1021/jp312766u

    142. [142]

      C. Li, H. Tian, S. Duan, et al., J. Phys. Chem. B 115 (2011) 13350-13354.  doi: 10.1021/jp206199b

    143. [143]

      D. Desbouis, I.P. Troitsky, M.J. Belousoff, L. Spiccia, B. Graham, Coordin. Chem. Rev. 256 (2012) 897-937.

    144. [144]

      M. Shokeen, C.J. Anderson, Acc. Chem. Res. 42 (2009) 832-841.  doi: 10.1021/ar800255q

    145. [145]

      T. Joshi, B. Graham, L. Spiccia, Acc. Chem. Res. 48 (2015) 2366-2379.  doi: 10.1021/acs.accounts.5b00142

    146. [146]

      J. Hormann, J. Malina, O. Lemke, et al., Inorg. Chem. 57 (2018) 5004-5012.  doi: 10.1021/acs.inorgchem.8b00027

    147. [147]

      M. Liu, X.Q. Song, Y.D. Wu, J. Qian, J.Y. Xu, Dalton Trans. 49 (2020) 114-123.

    148. [148]

      A. Adhikari, N. Kumari, M. Adhikari, et al., Bioorg. Med. Chem. 25 (2017) 3483-3490.

    149. [149]

      Z.F. Wang, X.F. Zhou, Q.C. Wei, et al., Eur. J. Med. Chem. 238 (2022) 114418.

    150. [150]

      Q.P. Qin, Z.Z. Wei, Z.F. Wang, et al., Chem. Commun. 56 (2020) 3999-4002.  doi: 10.1039/d0cc00524j

    151. [151]

      D.Y. Zeng, G.T. Kuang, S.K. Wang, et al., J. Med. Chem. 60 (2017) 5407-5423.  doi: 10.1021/acs.jmedchem.7b00016

    152. [152]

      M.C. Heffern, N. Yamamoto, R.J. Holbrook, A.L. Eckermann, T.J. Meade, Curr. Opin. Chem. Biol. 17 (2013) 189-196.

    153. [153]

      P.B. Cressey, A. Eskandari, P.M. Bruno, et al., ChemBioChem 17 (2016) 1713-1718.  doi: 10.1002/cbic.201600368

    154. [154]

      R. Barth, A. Soloway, Cancer Res. 50 (1990) 1061-1070.

    155. [155]

      T.R. Murray-Stewart, P.M. Woster, R.A. Casero, Biochem. J. 473 (2016) 2937-2953.

    156. [156]

      H. Ueda, M. Suzuki, R. Kuroda, T. Tanaka, S. Aoki, J. Med. Chem. 64 (2021) 8523-8544.  doi: 10.1021/acs.jmedchem.1c00445

    157. [157]

      H. Ueda, M. Suzuki, Y. Sakurai, T. Tanaka, S. Aoki, Eur. J. Inorg. Chem. (2022) e202100949.

    158. [158]

      S. Tan, D. Sun, J. Lyu, et al., Bioorg. Med. Chem. 23 (2015) 5672-5680.

    159. [159]

      C. Li, F. Zhao, Y. Huang, et al., Bioconjug. Chem. 23 (2012) 1832-1837.  doi: 10.1021/bc300162g

    160. [160]

      C. Ma, J. Zhang, L. Guo, et al., Mol. Pharm. 13 (2016) 47-54.  doi: 10.1021/acs.molpharmaceut.5b00396

    161. [161]

      M. Wojnilowicz, A. Glab, A. Bertucci, F. Caruso, F. Cavalieri, ACS Nano 13 (2018) 187-202.

    162. [162]

      S. Okamoto, T. Shiga, N. Tamaki, Molecules 26 (2021) 2232.  doi: 10.3390/molecules26082232

    163. [163]

      K. Herrmann, M. Schwaiger, J.S. Lewis, et al., Lancet Oncol. 21 (2020) e146-e156.

    164. [164]

      H.A. Holik, F.M. Ibrahim, A.A. Elaine, et al., Molecules 27 (2022) 3062.  doi: 10.3390/molecules27103062

    165. [165]

      T.J. Wadas, E.H. Wong, G.R. Weisman, C.J. Anderson, Chem. Rev. 110 (2010) 2858-2902.  doi: 10.1021/cr900325h

    166. [166]

      E.W. Price, C. Orvig, Chem. Soc. Rev. 43 (2014) 260-290.

    167. [167]

      F. Roesch, P. J Riss, Curr. Top. Med. Chem. 10 (2010) 1633-1668.  doi: 10.2174/156802610793176738

    168. [168]

      Z. Baranyai, G. Tircsó, F. Rösch, Eur. J. Inorg. Chem. 2020 (2020) 36-56.  doi: 10.1002/ejic.201900706

    169. [169]

      U. Hennrich, M. Eder, Pharmaceuticals 15 (2022) 1292.  doi: 10.3390/ph15101292

    170. [170]

      U. Hennrich, K. Kopka, Pharmaceuticals 12 (2019) 114.  doi: 10.3390/ph12030114

    171. [171]

      U. Hennrich, M. Benešová, Pharmaceuticals 13 (2020) 38.  doi: 10.3390/ph13030038

    172. [172]

      C. Liu, T. Liu, N. Zhang, et al., Eur. J. Nucl. Med. Mol. Imaging 45 (2018) 1852-1861.  doi: 10.1007/s00259-018-4037-9

    173. [173]

      I. Heidegger, C. Kesch, A. Kretschmer, et al., Ther. Adv. Med. Oncol. 14 (2022) 1-10.  doi: 10.2307/j.ctv2ngx62z.7

    174. [174]

      D.G. Bostwick, A. Pacelli, M. Blute, P. Roche, G.P. Murphy, Cancer 82 (1998) 2256-2261.

    175. [175]

      A. Afshar-Oromieh, H. Hetzheim, C. Kratochwil, et al., J. Nucl. Med. 56 (2015) 1697-1705.  doi: 10.2967/jnumed.115.161299

    176. [176]

      C. Kratochwil, F.L. Giesel, M. Stefanova, et al., J. Nucl. Med. 57 (2016) 1170-1176.  doi: 10.2967/jnumed.115.171397

    177. [177]

      O. Sartor, J. de Bono, K.N. Chi, et al., N. Engl. J. Med. 385 (2021) 1091-1103.  doi: 10.1056/nejmoa2107322

    178. [178]

      M.J. Klomp, S.U. Dalm, M. de Jong, et al., Rev. Endocr. Metab. Disord. 22 (2021) 495-510.  doi: 10.1007/s11154-020-09607-z

    179. [179]

      J. Strosberg, G. El-Haddad, E. Wolin, et al., N. Engl. J. Med. 376 (2017) 125-135.  doi: 10.1056/NEJMoa1607427

    180. [180]

      J. Strosberg, E. Wolin, B. Chasen, et al., J. Clin. Oncol. 36 (2018) 2578-2584.  doi: 10.1200/jco.2018.78.5865

    181. [181]

      L. Zhao, B. Niu, J. Fang, et al., J. Nucl. Med. 63 (2022) 862-868.  doi: 10.2967/jnumed.121.263016

    182. [182]

      J. Zang, X. Wen, R. Lin, et al., Theranostics 12 (2022) 7180-7190.  doi: 10.7150/thno.79144

    183. [183]

      M. Xu, P. Zhang, J. Ding, et al., J. Nucl. Med. 63 (2022) 952-958.  doi: 10.2967/jnumed.121.262533

    184. [184]

      L. Zhao, J. Chen, Y. Pang, et al., Mol. Pharm. 19 (2022) 3640-3651.  doi: 10.1021/acs.molpharmaceut.2c00424

    185. [185]

      T.T. Huynh, E.M. van Dam, S. Sreekumar, et al., Pharmaceuticals 15 (2022) 728.  doi: 10.3390/ph15060728

    186. [186]

      E. Gourni, L. Del Pozzo, E. Kheirallah, et al., Mol. Pharm. 12 (2015) 2781-2790.  doi: 10.1021/mp500671j

    187. [187]

      A.V.F. Massicano, B.V. Marquez-Nostra. S.E. Lapi, Mol. Imaging 17 (2018) 1-11.

    188. [188]

      N. Liu, Q. Wan, Z. Cheng, Y. Chen, Curr. Top. Med. Chem. 19 (2019) 17-32.

  • 加载中
    1. [1]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    2. [2]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    3. [3]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    4. [4]

      Xinguo MaoShuo ZhangQiang ShiHua ChengLeyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950

    5. [5]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    6. [6]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    7. [7]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    8. [8]

      Yu-Jie LongXiao-Ni HanYing HanChuan-Feng Chen . Recent advances in supramolecular luminescent materials based on macrocyclic arenes. Chinese Chemical Letters, 2025, 36(6): 110600-. doi: 10.1016/j.cclet.2024.110600

    9. [9]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    10. [10]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    11. [11]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    12. [12]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    13. [13]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    16. [16]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    17. [17]

      Xiaoyi MengXinyue SunZhaogang SunYue ChengYong WangJun YeYin XiaoHongqian Chu . Supramolecular-orchestrated carrier-free chemodynamic synergists with augmented oxidative damage for potentiated cancer therapy. Chinese Chemical Letters, 2025, 36(5): 110765-. doi: 10.1016/j.cclet.2024.110765

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Qi HuangJun LiaoJingjing LiZhengyan GuXinkang ZhangMingxue SunWenqi MengGuanchao MaoZhipeng PeiShanshan ZhangSongling LiChuan ZhangYunqin WangJihao LiuTingbin ShuMin TaoYing LuKai XiaoQingqiang XuJincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914

    20. [20]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return