Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning
-
* Corresponding author.
E-mail address: chwang@hebtu.edu.cn (C. Wang).
Citation:
Jieyu Liu, Junze Zhang, Haigang Deng, Shuoao Wang, Xingxing Jiang, Li Wang, Changhong Wang. Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning[J]. Chinese Chemical Letters,
;2025, 36(12): 110656.
doi:
10.1016/j.cclet.2024.110656
F. Jiao, B. Xu, Adv. Mater. 31 (2019) 1805173.
J. Feng, Y. Ji, Y. Li, J. Mater. Chem. A 11 (2023) 14195–14203.
doi: 10.1039/d3ta01883k
T. Shen, S. Wang, T. Zhao, Y. Hu, D. Wang, Adv. Energy Mater. 12 (2022) 2201823.
L. Chen, Q. Li, B.J. Li, et al., Mol. Catal. 549 (2023) 113531.
T. Wu, M.M. Melander, K. Honkala, ACS Catal. 12 (2022) 2505–2512.
doi: 10.1021/acscatal.1c05820
J. Liang, Q. Zhou, T. Mou, et al., Nano Res. 15 (2022) 4008–4013.
doi: 10.1007/s12274-022-4174-0
J. Liang, W.F. Hu, B. Song, et al., Inorg. Chem. Front. 9 (2022) 1366–1372.
doi: 10.1039/d2qi00002d
G. Di Liberto, G. Pacchioni, Adv. Mater. 35 (2023) 2307150.
Y. Tang, C. Asokan, M. Xu, et al., Nat. Commun. 10 (2019) 4488.
B. Qiao, A. Wang, X. Yang, Nat. Chem. 3 (2011) 634–641.
doi: 10.1038/nchem.1095
G. Vilé, D. Albani, M. Nachtegaal, et al., Angew. Chem. Int. Ed. 54 (2015) 11265–11269.
doi: 10.1002/anie.201505073
T. Yang, X. Mao, Y. Zhang, et al., Nat. Commun. 12 (2021) 6022.
X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Nano Res. 13 (2020) 1842–1855.
doi: 10.1007/s12274-020-2755-3
G. Di Liberto, L.A. Cipriano, G. Pacchioni, ChemCatChem 14 (2022) e202200611.
C. Copéret, A. Comas-Vives, M.P. Conley, et al., Chem. Rev. 116 (2016) 323–421.
doi: 10.1021/acs.chemrev.5b00373
T. Asset, S.T. Garcia, S. Herrera, et al., ACS Catal. 9 (2019) 7668–7678.
doi: 10.1021/acscatal.9b01513
Y. Chen, I. Matanovic, E. Weiler, P. Atanassov, K. Artyushkova, ACS Appl. Energy Mater. 1 (2018) 5948–5953.
doi: 10.1021/acsaem.8b00959
N. Cheng, S. Stambula, D. Wang, et al., Nat. Commun. 7 (2016) 13638.
C. Ling, Q. Li, A. Du, J. Wang, ACS Appl. Mater. Interfaces 10 (2018) 36866–36872.
doi: 10.1021/acsami.8b10394
C. Ling, Y. Ouyang, Q. Li, et al., Small Methods 3 (2019) 1800376.
S. Rojas-Carbonell, K. Artyushkova, A. Serov, et al., ACS Catal. 8 (2018) 3041–3053.
doi: 10.1021/acscatal.7b03991
S. Tosoni, G. Di Liberto, I. Matanovic, G. Pacchioni, J. Power Sources 556 (2023) 232492.
J.C. Calderón Gómez, R. Moliner, M.J. Lázaro, Catalysts 6 (2016) 130.
doi: 10.3390/catal6090130
Y. Liu, Z. Zhuang, Y. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202411396.
K. Chen, Z. Ma, X. Li, et al., Adv. Funct. Mater. 33 (2023) 2209890.
G. Liu, Y. Huang, H. Lv, et al., Appl. Catal. B: Environ. 284 (2021) 119683.
J. Lim, C.Y. Liu, J. Park, et al., ACS Catal. 11 (2021) 7568–7577.
doi: 10.1021/acscatal.1c01413
K. Chen, J. Xiang, Y. Guo, et al., Nano Lett. 24 (2024) 541–548.
doi: 10.1021/acs.nanolett.3c02259
F. Qin, D. Zhou, M. Sun, et al., Chem. Commun. 57 (2021) 11561–11564.
doi: 10.1039/d1cc04984d
J.K. Nørskov, J. Rossmeisl, A. Logadottir, et al., J. Phys. Chem. B 108 (2004) 17886–17892.
doi: 10.1021/jp047349j
J. Long, S. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 9711–9718.
doi: 10.1002/anie.202002337
K.S. Exner, ACS Catal. 10 (2020) 12607–12617.
doi: 10.1021/acscatal.0c03865
M.T.M. Koper, J. Solid State Electrochem. 17 (2013) 339–344.
doi: 10.1007/s10008-012-1918-x
S. Razzaq, K.S. Exner, ACS Catal. 13 (2023) 1740–1758.
doi: 10.1021/acscatal.2c03997
C.A. Casey-Stevens, H. Ásmundsson, E. Skúlason, A.L. Garden, Appl. Surf. Sci. 552 (2021) 149063.
A. Clayborne, H.J. Chun, R.B. Rankin, J. Greeley, Angew. Chem. Int. Ed. 54 (2015) 8255–8258.
doi: 10.1002/anie.201502104
A.C.A. de Vooys, M.T.M. Koper, R.A. van Santen, J.A.R. van Veen, Electrochim. Acta 46 (2001) 923–930.
I. Katsounaros, M.C. Figueiredo, X. Chen, F. Calle-Vallejo, M.T.M. Koper, ACS Catal. 7 (2017) 4660–4667.
doi: 10.1021/acscatal.7b01069
J. Hafner, J. Comput. Chem. 29 (2008) 2044–2078.
doi: 10.1002/jcc.21057
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558–561.
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44 (1991) 943–954.
K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, J. Chem. Phys. 140 (2014) 084106.
J.Y. Lee, M.P.J. Punkkinen, S. Schönecker, et al., Surf. Sci. 674 (2018) 51–68.
M.T. Greiner, T.E. Jones, S. Beeg, et al., Nat. Chem. 10 (2018) 1008–1015.
doi: 10.1038/s41557-018-0125-5
G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36 (2006) 354–360.
F. Pedregosa, G. Varoquaux, A. Gramfort, et al., J. Machine Learning Res. 12 (2011) 2825–2830.
H. Liu, X. Jia, A. Cao, et al., J. Chem. Phys. 158 (2023) 124705.
W. Yang, Z. Jia, L. Chen, et al., Chem. Commun. 59 (2023) 10761–10764.
doi: 10.1039/d3cc03208f
W. Yang, Z. Jia, B. Zhou, et al., Commun. Chem. 6 (2023) 6.
H. Ooka, J. Huang, K.S. Exner, Front. Energy Res. 9 (2021) 654460.
S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030–1035.
doi: 10.1002/jcc.24300
I.C. Man, H.Y. Su, F. Calle-Vallejo, et al., ChemCatChem 3 (2011) 1159–1165.
doi: 10.1002/cctc.201000397
X. Chen, X. Liu, X. Shen, Q. Zhang, Angew. Chem. Int. Ed. 60 (2021) 24354–24366.
doi: 10.1002/anie.202107369
X. Zhang, K. Li, B. Wen, J. Ma, D. Diao, Chin. Chem. Lett. 34 (2023) 107833.
R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, Phys. Rev. Mater. 2 (2018) 083802.
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Xu He , Wenjie Gao , Jinglei Xu , Zhanjun Cheng , Wenchao Peng , Beibei Yan , Guanyi Chen , Ning Li . Machine learning-assisted construction of C=O and pyridinic N active sites in sludge-based catalysts. Chinese Chemical Letters, 2025, 36(12): 111019-. doi: 10.1016/j.cclet.2025.111019
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Xi Xue , Kai Chen , Hanyu Sun , Xiangying Liu , Xue Liu , Shize Li , Jingjie Yan , Yu Peng , Mohammad S. Mubarak , Ahmed Al-Harrasi , Hai-Yu Hu , Yafeng Deng , Xiandao Pan , Xiaojian Wang . Bidirectional Chemical Intelligent Net: A unified deep learning–based framework for predicting chemical reaction. Chinese Chemical Letters, 2025, 36(11): 110968-. doi: 10.1016/j.cclet.2025.110968
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Zonglin Li , Shihua Zou , Zining Wang , Georgeta Postole , Liang Hu , Hongying Zhao . Machine learning in electrochemical oxidation process: A mini-review. Chinese Chemical Letters, 2025, 36(8): 110526-. doi: 10.1016/j.cclet.2024.110526
Yunzhe Zheng , Si Sun , Jiali Liu , Qingyu Zhao , Heng Zhang , Jing Zhang , Peng Zhou , Zhaokun Xiong , Chuan-Shu He , Bo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
Lu Li , Jianing Shen , Qinkun Xiao , Chaozheng He , Jinzhou Zheng , Chaoqin Chu , Chen Chen . Stable crystal structure prediction using machine learning-based formation energy and empirical potential function. Chinese Chemical Letters, 2025, 36(11): 110421-. doi: 10.1016/j.cclet.2024.110421
Han-Bin Liu , Xiaoyu Cheng , Zhou Guo , Juan Yang , Fuwen Tan , Donghui Lan , Jian-Ping Tan , Bing Yi , Weixin Zhai , Qing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149
Zunjie Zhang , Mengran Liu , Bingcheng Ge , Tianfang Yang , Shuaitong Wang , Yang Liu , Shuyan Gao . In-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia. Chinese Chemical Letters, 2025, 36(8): 110657-. doi: 10.1016/j.cclet.2024.110657
Mingxing Chen , Xue Li , Nian Liu , Zihe Du , Zhitao Wang , Jing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671