Citation: Junliang Zhou, Tian-Bing Ren, Lin Yuan. The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging[J]. Chinese Chemical Letters, ;2025, 36(8): 110644. doi: 10.1016/j.cclet.2024.110644 shu

The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging

    * Corresponding authors.
    E-mail addresses: rentianbing@hnu.edu.cn (T.-B. Ren), lyuan@hnu.edu.cn (L. Yuan).
  • Received Date: 23 September 2024
    Revised Date: 8 November 2024
    Accepted Date: 11 November 2024
    Available Online: 12 November 2024

Figures(18)

  • Organic small molecule fluorophores have been widely used in biology and biochemistry to study cellular structures and processes at high spatial and temporal resolution. Small-molecule dyes offer various benefits, such as high photostability, low molecular weight, and great biocompatibility. However, the poor brightness of most of conventional dyes in biological environments limits their use in high-quality super-resolution fluorescence imaging. Chemists have conceived and developed many methods to enhance the brightness of fluorophores, including structural alterations that raise extinction coefficients and quantum yields. This review outlines current attempts and substantial advances achieved by chemists to improve the brightness of organic small-molecule fluorescent dyes, such as scaffold rigidification and twisted intramolecular charge transfer (TICT) inhibition. We think that this review will help researchers understand the chemical mechanisms involved in increasing the brightness of fluorophores for biological applications.
  • 加载中
    1. [1]

      J.B. Grimm, L.D. Lavis, Nat. Methods 19 (2022) 149–158.  doi: 10.1038/s41592-021-01338-6

    2. [2]

      D. Si, Q. Li, Y. Bao, et al., Angew. Chem. Int. Ed. 62 (2023) e202307641.

    3. [3]

      M. Minoshima, S.I. Reja, R. Hashimoto, et al., Chem. Rev. 124 (2024) 6198–6270.  doi: 10.1021/acs.chemrev.3c00549

    4. [4]

      H.W. Liu, L. Chen, C. Xu, et al., Chem. Soc. Rev. 47 (2018) 7140–7180.  doi: 10.1039/c7cs00862g

    5. [5]

      L. Chen, Y. Lyu, X. Zhang, et al., Sci. China Chem. 66 (2023) 1336–1383.  doi: 10.1007/s11426-022-1461-3

    6. [6]

      G. Hong, A.L. Antaris, H. Dai, Nat. Biomed. Eng. 1 (2017) 0010.

    7. [7]

      R.R. Zhang, A.B. Schroeder, J.J. Grudzinski, et al., Nat. Rev. Clin. Oncol. 14 (2017) 347–364.  doi: 10.1038/nrclinonc.2016.212

    8. [8]

      M. Sauer, M. Heilemann, Chem. Rev. 117 (2017) 7478–7509.  doi: 10.1021/acs.chemrev.6b00667

    9. [9]

      H. Li, J.C. Vaughan, Chem. Rev. 118 (2018) 9412–9454.  doi: 10.1021/acs.chemrev.7b00767

    10. [10]

      Z. Liu, Luke D. Lavis, E. Betzig, Mol. Cell 58 (2015) 644–659.

    11. [11]

      B. Huang, H. Babcock, X. Zhuang, Cell 143 (2010) 1047–1058.

    12. [12]

      L. Wang, M.S. Frei, A. Salim, et al., J. Am. Chem. Soc. 141 (2019) 2770–2781.

    13. [13]

      S. Zeng, X. Liu, Y.S. Kafuti, et al., Chem. Soc. Rev. 52 (2023) 5607–5651.  doi: 10.1039/d2cs00799a

    14. [14]

      M. Dai, Y.J. Yang, S. Sarkar, et al., Chem. Soc. Rev. 52 (2023) 6344–6358.  doi: 10.1039/d3cs00475a

    15. [15]

      L. Wang, W. Du, Z. Hu, et al., Angew. Chem. Int. Ed. 58 (2019) 14026–14043.  doi: 10.1002/anie.201901061

    16. [16]

      A.S. Mishin, V.V. Belousov, K.M. Solntsev, et al., Curr. Opin. Chem. Biol. 27 (2015) 1–9.

    17. [17]

      D. Jin, P. Xi, B. Wang, et al., Nat. Methods 15 (2018) 415–423.  doi: 10.1038/s41592-018-0012-4

    18. [18]

      Y. Liao, Y. Liang, Y. Huang, et al., Chin. Chem. Lett. 35 (2024) 109092.

    19. [19]

      Y. Dong, X. Lu, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 108154.

    20. [20]

      P. Mauker, D. Beckmann, A. Kitowski, et al., J. Am. Chem. Soc. 146 (2024) 11072–11082.

    21. [21]

      Y.M. Poronik, K.V. Vygranenko, D. Gryko, et al., Chem. Soc. Rev. 48 (2019) 5242–5265.  doi: 10.1039/c9cs00166b

    22. [22]

      D. Cao, Z. Liu, P. Verwilst, et al., Chem. Rev. 119 (2019) 10403–10519.  doi: 10.1021/acs.chemrev.9b00145

    23. [23]

      Y. Yang, H. Zhong, B. Wang, et al., Chin. Chem. Lett. 34 (2023) 107674.

    24. [24]

      X. Xing, E. Pang, S. Zhao, et al., Chin. Chem. Lett. 35 (2024) 108467.

    25. [25]

      J. Bai, J. Zhou, X. Ji, et al., Chin. Chem. Lett. 33 (2022) 4175–4178.

    26. [26]

      C. Jiang, H. Huang, X. Kang, et al., Chem. Soc. Rev. 50 (2021) 7436–7495.  doi: 10.1039/d0cs01096k

    27. [27]

      S. Zhang, M. Ma, C. Zhao, et al., Biosens. Bioelectron. 261 (2024) 116514.

    28. [28]

      Z. Li, Q. Qiao, N. Xu, et al., Chin. Chem. Lett. 35 (2024) 108824.

    29. [29]

      G. Jiang, H. Liu, H. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202315217.

    30. [30]

      C. Wang, W. Chi, Q. Qiao, et al., Chem. Soc. Rev. 50 (2021) 12656–12678.  doi: 10.1039/d1cs00239b

    31. [31]

      M.J. Schnermann, L.D. Lavis, Curr. Opin. Chem. Biol. 75 (2023) 102335.

    32. [32]

      A.S. Waggoner, R.B. Mujumdar, Patent, US6133445A, 2000.

    33. [33]

      M.S. Michie, R. Götz, C. Franke, et al., J. Am. Chem. Soc. 139 (2017) 12406–12409.  doi: 10.1021/jacs.7b07272

    34. [34]

      S.S. Matikonda, G. Hammersley, N. Kumari, et al., J. Org. Chem. 85 (2020) 5907–5915.  doi: 10.1021/acs.joc.0c00236

    35. [35]

      Z. Yang, J. Liu, H. Zhang, et al., Sens. Actuat. B Chem. 387 (2023) 133832.

    36. [36]

      T. Ren, W. Xu, F. Jin, et al., Anal. Chem. 89 (2017) 11427–11434.  doi: 10.1021/acs.analchem.7b02538

    37. [37]

      Y.J. Gong, X.B. Zhang, G.J. Mao, et al., Chem. Sci. 7 (2016) 2275–2285.

    38. [38]

      S.Y. Wen, W. Zhang, T.B. Ren, et al., Chem. Eur. J. 25 (2019) 6973–6979.  doi: 10.1002/chem.201900246

    39. [39]

      F. Wang, C.A. DeRosa, D. Song, et al., J. Phys. Chem. C 123 (2019) 23124–23130.  doi: 10.1021/acs.jpcc.9b06304

    40. [40]

      M.S. Baranov, K.A. Lukyanov, A.O. Borissova, et al., J. Am. Chem. Soc. 134 (2012) 6025–6032.  doi: 10.1021/ja3010144

    41. [41]

      A. Burghart, H. Kim, M.B. Welch, et al., J. Org. Chem. 64 (1999) 7813–7819.

    42. [42]

      J. Chen, A. Burghart, A. Derecskei-Kovacs, et al., J. Org. Chem. 65 (2000) 2900–2906.

    43. [43]

      H. Kim, A. Burghart, M. B. Welch, et al., Chem. Commun. (1999) 1889–1890.

    44. [44]

      W. Zhao, E.M. Carreira, Angew. Chem. Int. Ed. 44 (2005) 1677–1679.  doi: 10.1002/anie.200461868

    45. [45]

      W. Zhao, E.M. Carreira, Chem. Eur. J. 12 (2006) 7254–7263.  doi: 10.1002/chem.200600527

    46. [46]

      E.Y. Zhou, H.J. Knox, C. Liu, et al., J. Am. Chem. Soc. 141 (2019) 17601–17609.  doi: 10.1021/jacs.9b06694

    47. [47]

      K. Umezawa, Y. Nakamura, H. Makino, et al., J. Am. Chem. Soc. 130 (2008) 1550–1551.  doi: 10.1021/ja077756j

    48. [48]

      A. Patra, L.J. Patalag, P.G. Jones, et al., Angew. Chem. Int. Ed. 60 (2021) 747–752.  doi: 10.1002/anie.202012335

    49. [49]

      J. Labella, G. Durán-Sampedro, S. Krishna, et al., Angew. Chem. Int. Ed. 62 (2023) e202214543.

    50. [50]

      Z.R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103 (2003) 3899–4032.

    51. [51]

      G. Jones, II, W.R. Jackson, C.Y. Choi, et al., J. Phys. Chem. 89 (1985) 294–300.  doi: 10.1021/j100248a024

    52. [52]

      J.E. Whitaker, R.P. Haugland, D. Ryan, et al., Anal. Biochem. 207 (1992) 267–279.

    53. [53]

      M.S. Baranov, K.M. Solntsev, N.S. Baleeva, et al., Chem. Eur. J. 20 (2014) 13234–13241.  doi: 10.1002/chem.201403678

    54. [54]

      R.F. Kubin, A.N. Fletcher, J. Lumin. 27 (1982) 455–462.

    55. [55]

      K. Hanaoka, S. Iwaki, K. Yagi, et al., J. Am. Chem. Soc. 144 (2022) 19778–19790.  doi: 10.1021/jacs.2c06397

    56. [56]

      X. Ren, C. Wang, X. Wu, et al., J. Am. Chem. Soc. 146 (2024) 6566–6579.  doi: 10.1021/jacs.3c11823

    57. [57]

      X. Song, A. Johnson, J. Foley, J. Am. Chem. Soc. 130 (2008) 17652–17653.  doi: 10.1021/ja8075617

    58. [58]

      J.B. Grimm, B.P. English, J. Chen, et al., Nat. Methods 12 (2015) 244–250.  doi: 10.1038/nmeth.3256

    59. [59]

      N.S. Baleeva, S.O. Zaitseva, D.A. Gorbachev, et al., Eur. J. Org. Chem. 2017 (2017) 5219–5224.  doi: 10.1002/ejoc.201700805

    60. [60]

      D.K. Sharma, S.T. Adams, Jr., K.L. Liebmann, et al., Org. Lett. 19 (2017) 5836–5839.  doi: 10.1021/acs.orglett.7b02806

    61. [61]

      Y. Ikeda, M. Orioka, T. Nomoto, et al., ChemBioChem 22 (2021) 3067–3074.  doi: 10.1002/cbic.202100310

    62. [62]

      J.B. Grimm, A.K. Muthusamy, Y. Liang, et al., Nat. Methods 14 (2017) 987–994.  doi: 10.1038/nmeth.4403

    63. [63]

      Q. Zheng, A.X. Ayala, I. Chung, et al., ACS Cent. Sci. 5 (2019) 1602–1613.  doi: 10.1021/acscentsci.9b00676

    64. [64]

      J.B. Grimm, A.N. Tkachuk, L. Xie, et al., Nat. Methods 17 (2020) 815–821.  doi: 10.1038/s41592-020-0909-6

    65. [65]

      A.S. Abdelfattah, T. Kawashima, A. Singh, et al., Science 365 (2019) 699–704.  doi: 10.1126/science.aav6416

    66. [66]

      K. Hadidi, Y. Tor, Chem. Eur. J. 28 (2022) e202200765.

    67. [67]

      K. Hadidi, K.B. Steinbuch, L.E. Dozier, et al., Angew. Chem. Int. Ed. 62 (2023) e202216784.

    68. [68]

      J. Zhou, X. Lin, X. Ji, et al., Org. Lett. 22 (2020) 4413–4417.  doi: 10.1021/acs.orglett.0c01414

    69. [69]

      X. Liu, Q. Qiao, W. Tian, et al., J. Am. Chem. Soc. 138 (2016) 6960–6963.  doi: 10.1021/jacs.6b03924

    70. [70]

      M.J.H. Ong, R. Srinivasan, A. Romieu, et al., Org. Lett. 18 (2016) 5122–5125.  doi: 10.1021/acs.orglett.6b02564

    71. [71]

      H.C. Friedman, E.D. Cosco, T.L. Atallah, et al., Chem 7 (2021) 3359–3376.

    72. [72]

      X. Lu, X. Zhuang, Y. Dong, et al., Chem. Mater. 36 (2024) 949–958.  doi: 10.1021/acs.chemmater.3c02848

    73. [73]

      J.B. Sweeney, Chem. Soc. Rev. 31 (2002) 247–258.

    74. [74]

      Z. Ye, W. Yang, C. Wang, et al., J. Am. Chem. Soc. 141 (2019) 14491–14495.  doi: 10.1021/jacs.9b04893

    75. [75]

      X. Lv, C. Gao, T. Han, et al., Chem. Commun. 56 (2020) 715–718.  doi: 10.1039/c9cc09138f

    76. [76]

      X. Lv, T. Han, Y. Wu, et al., Chem. Commun. 57 (2021) 9744–9747.  doi: 10.1039/d1cc03360c

    77. [77]

      J.B. Grimm, L. Xie, J.C. Casler, et al., JACS Au 1 (2021) 690–696.  doi: 10.1021/jacsau.1c00006

    78. [78]

      K. Roßmann, K.C. Akkaya, P. Poc, et al., Chem. Sci. 13 (2022) 8605–8617.  doi: 10.1039/d1sc06466e

    79. [79]

      H. Janeková, H.C. Friedman, M. Russo, et al., Chem. Commun. 60 (2024) 1000–1003.  doi: 10.1039/d3cc05153f

    80. [80]

      T.B. Ren, W. Xu, W. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 7716–7722.  doi: 10.1021/jacs.8b04404

    81. [81]

      G. Jiang, T.B. Ren, E. D'Este, et al., Nat. Commun. 13 (2022) 2264.

    82. [82]

      S. Singha, D. Kim, B. Roy, et al., Chem. Sci. 6 (2015) 4335–4342.

    83. [83]

      C.A. Hoelzel, H. Hu, C.H. Wolstenholme, et al., Angew. Chem. Int. Ed. 59 (2020) 4785–4792.  doi: 10.1002/anie.201915744

    84. [84]

      X. Li, X. Gao, W. Shi, et al., Chem. Rev. 114 (2014) 590–659.  doi: 10.1021/cr300508p

    85. [85]

      A. Haque, K.M. Alenezi, A.K.D. Alsukaibi, et al., Top. Curr. Chem. 382 (2024) 14.  doi: 10.71459/edutech202414

    86. [86]

      J. Luo, Z. Xie, J.W.Y. Lam, et al., Chem. Commun. (2001) 1740–1741.

    87. [87]

      Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361–5388.  doi: 10.1039/c1cs15113d

    88. [88]

      Y. Wang, J. Nie, W. Fang, et al., Chem. Rev. 120 (2020) 4534–4577.  doi: 10.1021/acs.chemrev.9b00814

    89. [89]

      H. Wang, Q. Li, P. Alam, et al., ACS Nano 17 (2023) 14347–14405.  doi: 10.1021/acsnano.3c03925

    90. [90]

      F.Y. Zhu, L.J. Mei, R. Tian, et al., Chem. Soc. Rev. 53 (2024) 3350–3383.  doi: 10.1039/d3cs00698k

    91. [91]

      T.B. Ren, W. Xu, Q.L. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 7473–7477.  doi: 10.1002/anie.201800293

    92. [92]

      D.H. Li, C.L. Schreiber, B.D. Smith, Angew. Chem. Int. Ed. 59 (2020) 12154–12161.  doi: 10.1002/anie.202004449

    93. [93]

      D.H. Li, R.S. Gamage, A.G. Oliver, et al., Angew. Chem. Int. Ed. 62 (2023) e202305062.

    94. [94]

      R.N. Dsouza, U. Pischel, W.M. Nau, Chem. Rev. 111 (2011) 7941–7980.  doi: 10.1021/cr200213s

    95. [95]

      D.H. Li, B.D. Smith, J. Org. Chem. 87 (2022) 5893–5903.  doi: 10.1021/acs.joc.2c00179

    96. [96]

      H.J. Liu, G.W. Chen, R. Sun, et al., Chem. Commun. 60 (2024) 7089–7092.  doi: 10.1039/d4cc01742k

    97. [97]

      A. Simeonov, M. Matsushita, E.A. Juban, et al., Science 290 (2000) 307–313.

    98. [98]

      C. Szent-Gyorgyi, B.F. Schmidt, Y. Creeger, et al., Nat. Biotechnol. 26 (2008) 235–240.  doi: 10.1038/nbt1368

    99. [99]

      M.A. Plamont, E. Billon-Denis, S. Maurin, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 497–502.  doi: 10.1073/pnas.1513094113

    100. [100]

      A. Gautier, Acc. Chem. Res. 55 (2022) 3125–3135.  doi: 10.1021/acs.accounts.2c00098

    101. [101]

      N.G. Bozhanova, M.S. Baranov, N.V. Klementieva, et al., Chem. Sci. 8 (2017) 7138–7142.

    102. [102]

      F. Wang, Y. Zhong, O. Bruns, et al., Nat. Photonics 18 (2024) 535–547.  doi: 10.1038/s41566-024-01391-5

    103. [103]

      E.L. Schmidt, Z. Ou, E. Ximendes, et al., Nat. Rev. Method. Prim. 4 (2024) 23.

    104. [104]

      Z. Zhang, Y. Du, X. Shi, et al., Nat. Rev. Clin. Oncol. 21 (2024) 449–467.  doi: 10.1038/s41571-024-00892-0

    105. [105]

      Y. Chen, S. Wang, F. Zhang, Nat. Rev. Bioeng. 1 (2023) 60–78.

    106. [106]

      B. Li, L. Lu, M. Zhao, et al., Angew. Chem. Int. Ed. 57 (2018) 7483–7487.  doi: 10.1002/anie.201801226

    107. [107]

      S. Zhu, Z. Hu, R. Tian, et al., Adv. Mater. 30 (2018) 1802546.

    108. [108]

      R. Tian, Q. Zeng, S. Zhu, et al., Sci. Adv. 5 (2019) eaaw0672.

    109. [109]

      J. Xu, T. Han, Y. Wang, et al., Nano Lett. 22 (2022) 7965–7975.  doi: 10.1021/acs.nanolett.2c03311

    110. [110]

      J. Xu, N. Zhu, Y. Du, et al., Nat. Commun. 15 (2024) 2845.

    111. [111]

      Y. Zhang, Y. Jia, S. Zhu, SmartMat 5 (2023) e1245.

    112. [112]

      A.N. Butkevich, M.L. Bossi, G. Lukinavičius, et al., J. Am. Chem. Soc. 141 (2019) 981–989.  doi: 10.1021/jacs.8b11036

    113. [113]

      N. Panchuk-Voloshina, R.P. Haugland, J. Bishop-Stewart, et al., J. Histochem. Cytochem. 47 (1999) 1179–1188.  doi: 10.1177/002215549904700910

  • 加载中
    1. [1]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    4. [4]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    5. [5]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    6. [6]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    7. [7]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    8. [8]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    9. [9]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    12. [12]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    13. [13]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    14. [14]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    18. [18]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

    19. [19]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    20. [20]

      Hyoseok KimChangyi CuiKohei TohGenyir AdoTetsuya OgawaYixin ZhangShin-ichi SatoYong-Beom LimHiroki KurataLu ZhouMotonari Uesugi . Discovery of a self-assembling small molecule that sequesters RNA-binding proteins. Chinese Chemical Letters, 2025, 36(5): 110135-. doi: 10.1016/j.cclet.2024.110135

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return