Citation: Hui Liu, Baoying Xiao, Yaming Zhao, Wei Wang, Qiong Jia. Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives[J]. Chinese Chemical Letters, ;2025, 36(8): 110619. doi: 10.1016/j.cclet.2024.110619 shu

Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives

    * Corresponding authors.
    E-mail addresses: wangwei@jlau.edu.cn (W. Wang), jiaqiong@jlu.edu.cn (Q. Jia).
  • Received Date: 22 April 2024
    Revised Date: 5 November 2024
    Accepted Date: 6 November 2024
    Available Online: 7 November 2024

Figures(6)

  • Heavy metal pollution poses serious risks to the human health and the natural environment, and there is an urgent need to develop efficient heavy metal removal technologies. The adsorption strategy is one of the most famous strategies for the capture of heavy metal ions. In recent years, hyper crosslinked polymers (HCPs), a kind of hyper crosslinked porous material prepared by Friedel-Crafts alkylation reaction, have attracted more and more attention because of their advantages of ultra-light framework, wide range of building monomers, easy modification and functionalization. This review focuses on the advances of HCPs in the efficient applications to the removal of heavy metal ions. The fundamentals are presented including physicochemical properties, adsorption mechanism, and preparation strategies. Subsequently, the application and influencing factors of HCPs toward heavy metal ion adsorption are discussed in detail. Furthermore, the opportunities and challenges of HCPs in this promising research field are summarized and anticipated. We are convinced that the advanced HCP-based materials will make further contributions to heavy metal removal in wastewater treatment, further paving the way of advancing researches in this field.
  • 加载中
    1. [1]

      S. Bolisetty, M. Peydayesh, R. Mezzenga, Chem. Soc. Rev. 48 (2019) 463–487.  doi: 10.1039/c8cs00493e

    2. [2]

      C. Ling, Y.X. Zhao, Z.X. Ren, et al., Chin. Chem. Lett. 30 (2019) 2196–2200.

    3. [3]

      J. Lin, C. Harichund, Afr. J. Biomed. Res. 11 (2012) 9619–9629.

    4. [4]

      R. Fischer, H. Seidel, P. Morgenstern, et al., Eng. Life Sci. 5 (2005) 163–168.  doi: 10.1002/elsc.200420067

    5. [5]

      Y.R. Qiu, L.J. Mao, Desalination 329 (2013) 78–85.

    6. [6]

      R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Taiwan Inst. Chem. Eng. 45 (2014) 1910–1917.

    7. [7]

      M.T. Alvarez, C. Crespo, B. Mattiasson, Chemosphere 66 (2007) 1677–1683.

    8. [8]

      R. Gonte, K. Balasubramanian, J. Saudi Chem. Soc. 20 (2016) S579–S590.  doi: 10.1016/j.jscs.2013.04.003

    9. [9]

      M.D.F. Hossain, N. Akther, Y.B. Zhou, Chin. Chem. Lett. 31 (2020) 2525–2538.

    10. [10]

      S. Van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Catal. Rev. 45 (2003) 297–319.  doi: 10.1081/cr-120023908

    11. [11]

      Y.S. Zhang, W.G. Liu, M. Xu, F. Zheng, M.J. Zhao, J. Hazard. Mater. 178 (2010) 1085–1093.

    12. [12]

      Y.J. Dai, Q.Y. Sun, W.S. Wang, et al., Chemosphere 211 (2018) 235–253.

    13. [13]

      Z.X. Cai, X. Zhou, Y.S. Yang, et al., Chem. Eng. J. 466 (2023) 143315.

    14. [14]

      V.K. Gupta, O. Moradi, I. Tyagi, et al., Crit. Rev. Environ. Sci. Technol. 46 (2016) 93–118.  doi: 10.1080/10643389.2015.1061874

    15. [15]

      W.J. Peng, H.Q. Li, Y.Y. Liu, S.X. Song, J. Mol. Liq. 230 (2017) 496–504.

    16. [16]

      X.F. Feng, R.X. Long, L.L. Wang, et al., Sep. Purif. Technol. 284 (2022) 120099.

    17. [17]

      J. Li, X.X. Wang, G.X. Zhao, et al., Chem. Soc. Rev. 47 (2018) 2322–2356.  doi: 10.1039/c7cs00543a

    18. [18]

      X.M. Li, H.L. Xiong, Q. Jia, ACS Appl. Mater. Interfaces 11 (2019) 46205–46211.  doi: 10.1021/acsami.9b17202

    19. [19]

      N. Liu, L.F. Shi, X.H. Han, et al., Chin. Chem. Lett. 31 (2020) 386–390.

    20. [20]

      G.Y. Li, L. Qin, C. Yao, Y.H. Xu, Sci. Rep. 7 (2017) 15394.

    21. [21]

      Y.Y. Tian, G.S. Zhu, Chem. Rev. 120 (2020) 8934–8986.  doi: 10.1021/acs.chemrev.9b00687

    22. [22]

      Y. Tian, Y.D. Wang, L.J. Liu, et al., J. Mol. Liq. 372 (2023) 121171.

    23. [23]

      X.M. Wang, H. Ou, J.H. Huang, J. Colloid Interf. Sci. 538 (2019) 499–506.

    24. [24]

      Z.Y. Fu, J.Z. Jia, J. Li, C.K. Liu, Chem. Eng. J. 323 (2017) 557–564.  doi: 10.1016/j.cej.2017.04.090

    25. [25]

      H. Masoumi, A. Ghaemi, H.G. Gilani, J. Hazard. Mater. 416 (2021) 125923.  doi: 10.1016/j.jhazmat.2021.125923

    26. [26]

      J. Li, B. Zhao, L. Hao, et al., Food Chem. 404 (2023) 9.

    27. [27]

      H.Y. Li, B. Meng, S.H. Chai, H.L. Liu, S. Dai, Chem. Sci. 7 (2016) 905–909.  doi: 10.1039/c5sc04034e

    28. [28]

      J.M. Delente, D. Umadevi, K. Byrne, et al., Supramol. Chem. 32 (2020) 508–517.  doi: 10.1080/10610278.2020.1825715

    29. [29]

      L.X. Tan, B. Tan, Chem. Soc. Rev. 46 (2017) 3481-3481.  doi: 10.1039/c6cs00851h

    30. [30]

      X.M. Li, G. Chen, Q. Jia, J. Taiwan Inst. Chem. Eng. 93 (2018) 660–666.  doi: 10.1016/j.jtice.2018.09.023

    31. [31]

      X.M. Li, G. Chen, H. Xu, Q. Jia, Sep. Purif. Technol. 228 (2019) 115739.

    32. [32]

      X.M. Li, G. Chen, J.T. Ma, Q. Jia, Sep. Purif. Technol. 210 (2019) 995–1000.

    33. [33]

      D.Z. Wang, G. Chen, X.M. Li, Q. Jia, Sep. Purif. Technol. 227 (2019) 115720.

    34. [34]

      D.Z. Wang, X.M. Li, X.Q. Jin, Q. Jia, Sep. Purif. Technol. 216 (2019) 9–15.  doi: 10.3390/w12010009

    35. [35]

      L.X. Han, Y. Peng, J.T. Ma, Z. Shi, Q. Jia, Sep. Purif. Technol. 285 (2022) 120378.

    36. [36]

      X.M. Li, Y. Peng, Q. Jia, Sep. Purif. Technol. 236 (2020) 116260.

    37. [37]

      A. Waheed, N. Baig, N. Ullan, W. Falath, J. Environ. Manage. 287 (2021) 112360.  doi: 10.1016/j.jenvman.2021.112360

    38. [38]

      B.F. Zhao, L.Y. Jiang, Q. Jia, Chin. Chem. Lett. 33 (2022) 11–21.

    39. [39]

      H. Masoumi, A. Ghaemi, H.G. Gilani, Sep. Purif. Technol. 260 (2021) 118221.

    40. [40]

      L.X. Tan, B.E. Tan, Acta Chim. Sin. 73 (2015) 530–540.  doi: 10.6023/A15020096

    41. [41]

      B.Y. Li, F.B. Su, H.K. Luo, L.Y. Liang, B.E. Tan, Micropor. Mesopor. Mat. 138 (2011) 207–214.

    42. [42]

      T. Di, D. Tan, Q. Yu, et al., Langmuir. 35 (2019) 13860–13871.  doi: 10.1021/acs.langmuir.9b02459

    43. [43]

      D.A. Anito, T.X. Wang, Z.W. Liu, X.S. Ding, B.H. Han, J. Harzard. Mater. 400 (2020) 123188.

    44. [44]

      H.Q. Wang, Z.W. He, H.T. Yu, ChemistrySelect 6 (2021) 5711–5718.  doi: 10.1002/slct.202100909

    45. [45]

      J.W. Bai, S.H. Li, X.F. Ma, et al., Micropor. Mesopor. Mat. 331 (2022) 111647.

    46. [46]

      L. Xiang, Y. Zhu, S. Gu, et al., Macromol. Rapid Comm. 36 (2015) 1566–1571.  doi: 10.1002/marc.201500159

    47. [47]

      Y. He, Q.Q. Liu, F. Liu, et al., Micropor. Mesopor. Mat. 233 (2016) 10–15.  doi: 10.1117/12.2237827

    48. [48]

      Y. He, W.L. Bao, B. Li, et al., J. Radioanal. Nucl. Chem. 331 (2022) 3745–3756.  doi: 10.1007/s10967-022-08395-x

    49. [49]

      Z.L. Yang, X.N. Huang, X.D. Yao, H.B. Ji, J. Appl. Polym. Sci. 135 (2018) 45568.

    50. [50]

      J. Li, B.Y. Li, N.N. Shen, et al., ACS Cent. Sci. 7 (2021) 1441–1450.  doi: 10.1021/acscentsci.1c00847

    51. [51]

      X.Y. Yang, W.J. Wu, Y.H. Xie, et al., Environ. Sci. Technol. 57 (2023) 10870–10881.  doi: 10.1021/acs.est.3c02967

    52. [52]

      C. Li, W. Che, S.Y. Liu, G. Liao, Mater. Today Chem. 29 (2023) 101392.  doi: 10.1016/j.mtchem.2023.101392

    53. [53]

      Q. Zhou, Z.Q. Li, C.D. Shuang, et al., Chin. Chem. Lett. 23 (2012) 1079–1082.

    54. [54]

      P.R. Haratbar, A. Ghaemi, M. Nasiri, Environ. Sci. Pollut. Res. 29 (2022) 15040–15056.  doi: 10.1007/s11356-021-16603-6

    55. [55]

      M.P. Tsyurupa, V.A. Davankov, React. Funct. Polym. 53 (2002) 193–203.  doi: 10.1016/S1381-5148(02)00173-6

    56. [56]

      C.D. Wood, B. Tan, A. Trewin, et al., Chem. Mat. 19 (2007) 2034–2048.  doi: 10.1021/cm070356a

    57. [57]

      Y.L. Luo, S.C. Zhang, Y.X. Ma, W. Wang, B. Tan, Polym. Chem. 4 (2013) 1126–1131.

    58. [58]

      B.Y. Li, Z.H. Guan, X.J. Yang, et al., J. Mater. Chem. A 2 (2014) 11930–11939.

    59. [59]

      B.Y. Li, R.N. Gong, W. Wang, et al., Macromolecules 44 (2011) 2410–2414.  doi: 10.1021/ma200630s

    60. [60]

      W. Maatar, S. Boufi, Carbohydr. Polym. 126 (2015) 199–207.  doi: 10.1016/j.carbpol.2015.03.015

    61. [61]

      Y.J. Meng, Y.D. Wang, L.J. Liu, et al., Colloids Surf. A: Physicochem. Eng. Asp. 632 (2022) 127644.

    62. [62]

      G.H. Meng, B.H. Liu, Y.L. Wu, J. Zhang, Appl. Mech. Mater. 675-677 (2014) 158–162.

    63. [63]

      Z.J. Yang, G.F. Wu, Q.R. Li, et al., Sep. Sci. Technol. 56 (2021) 860–869.  doi: 10.1080/01496395.2020.1745239

    64. [64]

      C. Ling, F.Q. Liu, C. Long, et al., Chem. Eng. J. 236 (2014) 323–331.

    65. [65]

      J.Z. Jia, Z.Y. Fu, L. Wang, Z.A. Huang, C.K. Liu, Chem. Eng. Res. Des. 142 (2019) 346–354.

    66. [66]

      D.L. Zhu, C.Q. Qin, S.S. Ao, et al., Sep. Sci. Technol. 54 (2019) 2830–2839.  doi: 10.1080/01496395.2018.1554686

    67. [67]

      C.D. Shuang, M.Q. Wang, Q. Zhou, W.W. Zhou, A.M. Li, Water Res. 47 (2013) 6406–6414.

    68. [68]

      Y. Tian, L.J. Liu, F.Q. Ma, et al., J. Hazard. Mater. 419 (2021) 126538.  doi: 10.1002/adfm.202101239

    69. [69]

      Y.G. Zhao, H.Y. Shen, S.D. Pan, M.Q. Hu, J. Hazard. Mater. 182 (2010) 295–302.

    70. [70]

      G.W. Yang, H.Y. Han, C.Y. Du, Z.H. Luo, Y.J. Wang, Polymer. 51 (2010) 6193–6202.

    71. [71]

      K.X. Sang, Y.D. Wang, Y.D. Wang, et al., Sep. Purif. Technol. 305 (2023) 122292.

    72. [72]

      S.X. Wen, Y. Sun, R.R. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 3246–3258.  doi: 10.1021/acsami.0c21046

    73. [73]

      J.W. Bai, S.H. Li, H.J. Yan, et al., J. Mol. Liq. 362 (2022) 119745.

    74. [74]

      G.G. Zhang, Y.D. Wang, X. Zhang, et al., Colloids Surf. A Physicochem. Eng. Asp. 641 (2022) 128508.

    75. [75]

      J.W. Bai, X.F. Ma, C. Gong, et al., J. Mol. Liq. 320 (2020) 114443.

    76. [76]

      M. Chaudhary, L. Singh, P. Rekha, V.C. Srivastava, P. Mohanty, Chem. Eng. J. 378 (2019) 122236.

    77. [77]

      T. Zheng, Z.X. Yang, D.X. Gui, et al., Nat. Commun. 8 (2017) 15369.

    78. [78]

      R. Leng, Y.C. Sun, C.Z. Wang, et al., Environ. Sci. Technol. 57 (2023) 9615–9626.  doi: 10.1021/acs.est.3c02916

    79. [79]

      L. Zhu, C.H. Zhang, F.F. Qin, et al., J. Mol. Liq. 368 (2022) 120741.

    80. [80]

      H. Yang, J.K. Liu, W.J. Wu, et al., ChemistrySelect. 8 (2023) e202301214.

    81. [81]

      X.Y. Zhu, L.J. Liu, Y.D. Wang, et al., J. Water Process. Eng. 53 (2023) 103615.

    82. [82]

      X.Y. Zhu, L.J. Liu, Y.D. Wang, et al., J. Water Process. Eng. 50 (2022) 103321.

    83. [83]

      X.Y. Zhu, L.J. Liu, Y.D. Wang, et al., J. Water Process. Eng. 53 (2023) 103842.

    84. [84]

      Y. Tian, Y.D. Wang, C. Wang, et al., J. Mol. Liq. 386 (2023) 122431.

    85. [85]

      C.T. Yue, R.J. Liu, Q.Y. Wan, et al., J. Water Process. Eng. 53 (2023) 103582.

    86. [86]

      M. Ahmad, K. Yang, L.X. Li, et al., ACS Appl. Nano Mater. 3 (2020) 6394–6405.  doi: 10.1021/acsanm.0c00837

    87. [87]

      Y. Sun, Z.C. Li, Y. Xu, Chin. Chem. Lett. 24 (2013) 747–750.

    88. [88]

      A. Anceschi, F. Caldera, M. Bertasa, et al., Nanomaterials 10 (2020) 482.  doi: 10.3390/nano10030482

    89. [89]

      J.N. Wang, L. Xu, Y. Meng, C. Cheng, A.M. Li, Chem. Eng. J. 178 (2011) 108–114.

    90. [90]

      S.J. Ni, Q. Ge, H.T. Yu, et al., ChemistrySelect 7 (2022) e202104558.

    91. [91]

      A. Modak, S. Das, D.K. Chanda, A. Samanta, S. Jana, New J. Chem. 43 (2019) 3341–3349.  doi: 10.1039/c8nj05527k

    92. [92]

      D. Esquivel, J. Ouwehand, M. Meledina, et al., J. Hazard. Mater. 339 (2017) 368–377.

    93. [93]

      F. Abadast, A. Mouradzadegun, M.R. Ganjali, New J. Chem. 41 (2017) 5458–5466.

    94. [94]

      A. Varyambath, W.L. Song, I. Kim, ChemPlusChem 83 (2018) 1078–1087.  doi: 10.1002/cplu.201800494

    95. [95]

      M.S. Ramezani, J. Ozdemir, A.R. Khosropour, M.H. Beyzavi, ACS Appl. Mater. Interfaces 12 (2020) 44117–44124.  doi: 10.1021/acsami.0c10617

    96. [96]

      H. Gao, L. Ding, H. Bai, L. Li, ChemSusChem 10 (2017) 618–623.  doi: 10.1002/cssc.201601475

    97. [97]

      E. García-Díez, S. Schaefer, A. Sanchez -Sanchez, et al., ACS Appl. Mater. Interfaces 11 (2019) 36789–36799.  doi: 10.1021/acsami.9b13247

    98. [98]

      Y.Q. Xie, J. Lin, J. Liang, et al., Chem. Eng. J. 378 (2019) 122107.

    99. [99]

      Z. Zhang, D. Liba, L. Alvarado, A. Chen, Sep. Purif. Technol. 137 (2014) 86–93.

    100. [100]

      K.E. Ukhurebor, U.O. Aigbe, R.B. Onyancha, et al., J. Environ. Manage. 280 (2021) 111809.  doi: 10.1016/j.jenvman.2020.111809

    101. [101]

      M.H. Sun, C. Yan, Y. Wu, et al., J. Mater. Sci. 57 (2022) 13800–13813.

    102. [102]

      J.P. Zhong, J. Zhou, M.S. Xiao, et al., Chin. Chem. Lett. 33 (2022) 973–978.

    103. [103]

      M. El Hefnawy, A.F. Shaaban, H.A. ElKhawaga, J. Environ. Chem. Eng. 8 (2020) 103788.  doi: 10.1016/j.jece.2020.103788

    104. [104]

      Y. He, Q.Q. Liu, J. Hu, et al., Sep. Purif. Technol. 180 (2017) 142–148.

    105. [105]

      H.A. Xin, N.Y. Gao, Q.L. Mang, J. Environ. Sci. 19 (2007) 1287–1292.

    106. [106]

      H. Masoumi, A. Ghaemi, H.G. Gilani, H.R. Penchah, J. Environ. Sci. Technol. 19 (2022) 6315–6330.  doi: 10.1007/s13762-021-03798-x

    107. [107]

      D. Ghosh, H. Solanki, M.K. Purkait, J. Hazard. Mater. 155 (2008) 135–143.

    108. [108]

      T. Ratvijitvech, J. Polym. Environ. 28 (2020) 2211–2218.  doi: 10.1007/s10924-020-01766-z

    109. [109]

      G.F. Liao, L. Zhong, C.S. Cheung, et al., Micropor. Mesopor. Mat. 307 (2020) 110469.

    110. [110]

      M. Hasanpour, M. Hatami, Adv. Colloid Interf. Sci. 284 (2020) 24.  doi: 10.1016/j.cis.2020.102247

    111. [111]

      M.E. Corman, C. Armutcu, L. Uzun, R. Say, A. Denizli, RSC Adv. 6 (2016) 88777–88787.

    112. [112]

      M. Ahmad, J.Q. Wang, J. Xu, Q.Y. Zhang, B.L. Zhang, J. Clean. Prod. 252 (2020) 119825.

    113. [113]

      Y. Tian, L.J. Liu, Y.D. Wang, et al., Environ. Res. 231 (2023) 116160.

    114. [114]

      P.R. Haratbar, M. Nasiri, A. Ghaemi, Iran. Polym. J. 32 (2023) 929–946.

    115. [115]

      M.T. Aljboar, A.A. Alghamdi, A.B. Al-Odayni, et al., Water. 15 (2023) 3009.  doi: 10.3390/w15163009

    116. [116]

      A.M. Metwally, H.A. ElKhawaga, A.F.F. Shaaban, L.M. Reda, Polym. Bull. 80 (2023) 12249–12270.  doi: 10.1007/s00289-022-04654-9

  • 加载中
    1. [1]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    2. [2]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    3. [3]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    4. [4]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    5. [5]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    6. [6]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    7. [7]

      Jinhui XuYanting ZhangKecheng WenXinyu WangZhiwei YangYuan HuangGuozhong ZhengLupeng HuangJing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240

    8. [8]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    9. [9]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    10. [10]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    11. [11]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    12. [12]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    15. [15]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    16. [16]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    17. [17]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    18. [18]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    19. [19]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    20. [20]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return