Citation: Mimi Wu, Shoufeng Tang, Zhibin Wang, Qingrui Zhang, Deling Yuan. Molybdenum carbide activated calcium sulfite for antibiotic decontamination at near-neutral pH: Dissolved oxygen promoted bisulfite adsorption for singlet oxygen generation[J]. Chinese Chemical Letters, ;2025, 36(8): 110613. doi: 10.1016/j.cclet.2024.110613 shu

Molybdenum carbide activated calcium sulfite for antibiotic decontamination at near-neutral pH: Dissolved oxygen promoted bisulfite adsorption for singlet oxygen generation

    * Corresponding author.
    E-mail addresses: tangshf@ysu.edu.cn (S. Tang), yuandl@ysu.edu.cn (D. Yuan).
  • Received Date: 19 July 2024
    Revised Date: 10 October 2024
    Accepted Date: 4 November 2024
    Available Online: 7 November 2024

Figures(5)

  • Common activations of sulfite (S(Ⅳ))-based advanced oxidation processes (AOPs) utilized metal ions and oxides as catalysts, which are constrained by challenges in catalyst recovery, inadequate stability, and susceptibility to secondary pollution in application. Calcium sulfite (CaSO3), one of the byproducts of flue gas desulfurization, is of interest in AOPs because of its ability to slowly release S(Ⅳ), low toxicity, and cost-effectiveness. Therefore, a heterogenous activator, molybdenum carbide (Mo2C) was selected to stimulate CaSO3 for typical antibiotic elimination. Benefiting from the dissociation form of HSO3 from CaSO3 and improved electron transfer of Mo2C at pH 6, the simulated target metronidazole (MTZ) can be removed by 85.65% with rate constant of 0.02424 min−1 under near-neutral circumstance. The combining determinations of quenching test, electron spin resonance spectrum, and reactive species probe demonstrated singlet oxygen (1O2) and sulfate radicals played leading role for MTZ decontamination. Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ), and revealed that dissolved oxygen promoted the adsorption of HSO3 on the surface of Mo2C, then facilitating production of 1O2. The favorable stability and applicability for Mo2C/CaSO3 process indicated an applied prospect in actual pharmaceutical wastewater.
  • 加载中
    1. [1]

      I. Saidi, I. Soutrel, D. Floner, et al., J. Haza rd. Mater. 278 (2014) 172–179.

    2. [2]

      P.J. Vikesland, A. Pruden, P.J.J. Alvarez, et al., Environ. Sci. Technol. 51 (2017) 13061–13069.  doi: 10.1021/acs.est.7b03623

    3. [3]

      D. Guo, S. You, F. Li, Y. Liu, Chin. Chem. Lett. 33 (2022) 1–10.

    4. [4]

      S. Pan, B. Cao, D. Yuan, et al., Chin. Chem. Lett. 35 (2024) 109185.

    5. [5]

      Y. Liao, Y. Ye, X. Chen, et al., Water Cycle. 5 (2024) 167–175.

    6. [6]

      D. Yuan, C. Zhang, S. Tang, et al., Sci. Total Environ. 727 (2020) 138773.

    7. [7]

      Z. Wang, F. Bai, L. Cao, et al., Chin. Chem. Lett. 33 (2022) 4766–4770.  doi: 10.3390/ma15144766

    8. [8]

      X. Li, Y. Guo, L. Yan, et al., Chem. Eng. J. 429 (2022) 132234.

    9. [9]

      S. Tu, A. Liu, H. Zhang, et al., Chin. Chem. Lett. 35 (2024) 109761.

    10. [10]

      P. Xie, L. Zhang, J. Chen, et al., Water Res. 149 (2019) 169–178.

    11. [11]

      X. Fu, Q. Zeng, Y. Gao, et al., ACS ES & T Engg. 4 (2024) 903–914.  doi: 10.1021/acsestengg.3c00502

    12. [12]

      S. Wu, L. Shen, Y. Lin, K. Yin, C. Yang, Chem. Eng. J. 414 (2021) 128872.

    13. [13]

      Y. Li, M. Huang, W.D. Oh, X. Wu, T. Zhou, Chin. Chem. Lett. 34 (2023) 108247.

    14. [14]

      D. Rao, H. Dong, L. Lian, et al., ACS ES & T Water 1 (2021) 1785–1795.  doi: 10.1021/acsestwater.1c00110

    15. [15]

      P. Córdoba, Fuel 144 (2015) 274–286.

    16. [16]

      B. Yue, S. Liu, W. Zhang, et al., J. Hazard. Mater. 461 (2024) 132731.

    17. [17]

      D. Zhou, Y. Yuan, S. Yang, H. Gao, L. Chen, J. Sulfur Chem. 36 (2015) 373–384.  doi: 10.1080/17415993.2015.1028939

    18. [18]

      Z. Zhou, J. Huang, G. Zeng, et al., Water Res. 221 (2022) 118792.

    19. [19]

      J. Zhang, J. Ma, H. Song, et al., Water Res. 133 (2018) 227–235.  doi: 10.3390/min8060227

    20. [20]

      Z. Hao, W. Hou, C. Fang, Y. Huang, X. Liu, J. Hazard. Mater. 439 (2022) 129618.

    21. [21]

      Y. Mei, J. Zeng, M. Sun, J. Ma, S. Komarneni, Sep. Purif. Technol. 230 (2020) 115866.

    22. [22]

      W. Wu, X. Zhao, G. Jing, Z. Zhou, Sci. Total Environ. 695 (2019) 133836.

    23. [23]

      W. Ding, X. Huang, W. Zhang, F. Wu, J. Li, Chem. Eng. J. 359 (2019) 1518–1526.

    24. [24]

      Y. Gu, A. Wu, Y. Jiao, et al., Angew. Chem. Int. Ed. 60 (2021) 6673–6681.  doi: 10.1002/anie.202016102

    25. [25]

      Y. Li, B. Yu, H. Li, et al., Chin. Chem. Lett. 34 (2023) 107874.

    26. [26]

      P. Chen, Y. Liang, B. Yang, F. Jia, S. Song, ACS Sustainable Chem. Eng. 8 (2020) 3673–3680.  doi: 10.1021/acssuschemeng.9b06639

    27. [27]

      D. Ruan, M. Fujitsuka, T. Majima, Appl. Catal. B: Environ. 264 (2020) 118541.

    28. [28]

      M.D. Porosoff, B. Yan, J.G. Chen, Energy Environ. Sci. 9 (2016) 62–73.

    29. [29]

      E. Zhu, D. Yuan, Z. Wang, Q. Zhang, S. Tang, Chem. Eng. J. 474 (2023) 145824.

    30. [30]

      Y. Xiang, D. Yuan, E. Zhu, et al., ACS ES & T Wat. 3 (2023) 857–865.

    31. [31]

      Q. Yi, J. Ji, B. Shen, et al., Environ. Sci. Technol. 53 (2019) 9725–9733.  doi: 10.1021/acs.est.9b01676

    32. [32]

      M.D. Porosoff, X. Yang, J.A. Boscoboinik, J.G. Chen, Angew. Chem. Int. Ed. 53 (2014) 6705–6709.  doi: 10.1002/anie.201404109

    33. [33]

      M. Bahman, H. Jalili, M. Etesam, A. Amrane, J. Water Process Eng. 47 (2022) 102820.

    34. [34]

      B.K. Karki, L. Philip, Chem. Eng. J. 483 (2024) 149180.

    35. [35]

      G. Li, C. Wang, Y. Yan, et al., Chem. Eng. J. 386 (2020) 124007.

    36. [36]

      H. Yu, Y. Liu, S. Cong, S. Xia, D. Zou, Sep. Purif. Technol. 312 (2023) 123345.

    37. [37]

      R.E. Huie, P. Neta, J. Phys. Chem. 88 (1984) 5665–5669.  doi: 10.1021/j150667a042

    38. [38]

      J. Peng, P. Zhou, H. Zhou, et al., Environ. Sci. Technol. 57 (2023) 10804–10815.  doi: 10.1021/acs.est.2c08266

    39. [39]

      D. Yuan, C. Zhang, S. Tang, et al., Water Res. 163 (2019) 114861.

    40. [40]

      S. Pan, D. Yuan, J. Li, et al., Appl. Catal. B: Environ. 356 (2024) 124225.

    41. [41]

      T. Peng, H. Zhang, S. Xia, et al., ACS ES & T Wat. 3 (2023) 213–226.  doi: 10.1021/acsestwater.2c00501

    42. [42]

      X. Dou, Q. Zhang, S.N.A. Shah, et al., Chem. Sci. 10 (2019) 497–500.  doi: 10.1039/c8sc03511c

    43. [43]

      P.S. Mendoza, V. Melin, D. Contreras, Y. Moreno, H. Mansilla, J. Chil. Chem. Soc. 58 (2013) 2096–2101.

    44. [44]

      W. Ding, W. Xiao, H. Zheng, et al., Chem. Eng. J. 402 (2020) 126168.

    45. [45]

      D. Rao, J. Chen, H. Dong, et al., Water Res. 188 (2021) 116481.

    46. [46]

      J. Luo, S. Bo, Y. Qin, et al., Chem. Eng. J. 395 (2020) 125063.

    47. [47]

      S. Mostafa, F.L. Rosario-Ortiz, Environ. Sci. Technol. 47 (2013) 8179–8186.  doi: 10.1021/es401814s

    48. [48]

      H. Cheng, Y. Wen, C. Huang, et al., Chem. Eng. J. 474 (2023) 145508.

    49. [49]

      Y. Bao, T. Chen, Z. Zhu, et al., Chemosphere, 287 (2022) 132047.

    50. [50]

      Z. Lian, T. Wu, X. Zhang, et al., Chem. Eng. J. 469 (2023) 143774.

    51. [51]

      L.L. Zhang, J.B. Chen, T.L. Zheng, et al., Water Res. 229 (2023) 119462.

    52. [52]

      Y. Ren, L. Lin, J. Ma, et al., Appl. Catal. B: Environ. 165 (2015) 572–578.

    53. [53]

      Z. Liu, Y. Luo, P. Yang, et al., J. Hazard. Mater. 452 (2023) 131311.

    54. [54]

      X. Gao, J. Chen, H. Che, Y. Ao, P. Wang, Chem. Eng. J. 426 (2021) 131585.

    55. [55]

      Y. Wu, H. Ji, Q. Liu, et al., J. Hazard. Mater. 424 (2022) 127563.

    56. [56]

      T. Pérez, S. Garcia-Segura, A. El-Ghenymy, J.L. Nava, E. Brillas, Electrochim. Acta. 165 (2015) 173–181.  doi: 10.1007/978-3-319-16268-3_18

    57. [57]

      Q. Li, H. Xu, G. Zhou, et al., Sep. Purif. Technol. 272 (2021) 118928.

    58. [58]

      J. Cao, J. Li, W. Chu, W. Cen, Chem. Eng. J. 400 (2020) 125813.

    59. [59]

      J. Sun, Y. Hou, Z. Yu, et al., J. Hazard. Mater. 419 (2021) 126543.

    60. [60]

      X. Guo, B. Hu, K. Wang, et al., Chem. Eng. J. 435 (2022) 132910.

    61. [61]

      Q. Zeng, Y. Wen, X. Duan, et al., Appl. Catal. B: Environ. Energy 346 (2024) 123752.

    62. [62]

      J. Li, G.S. Cassol, J. Zhao, et al., Water Res. 222 (2022) 118886.

    63. [63]

      R.E. Huie, C.L. Clifton, P. Neta, Radiat. Phys. Chem. 38 (1991) 477–481.

    64. [64]

      A. Asghar, H.V. Lutze, J. Tuerk, T.C. Schmidt, J. Hazard. Mater. 429 (2022) 128189.

    65. [65]

      M. Zhang, J. Ruan, X. Wang, et al., Water Res. 246 (2023) 120697.

    66. [66]

      B. Cha, Y. Yea, K. Yun, et al., J. Hazard. Mater. 458 (2023) 131847.

    67. [67]

      S. Jing, J. Ren, A. Wang, et al., Chem. Eng. J. (2024) 151549.

    68. [68]

      Z. Fang, Z. Zhou, G. Xue, et al., J. Hazard. Mater. 426 (2022) 128081.

    69. [69]

      J. Li, X. Cheng, H. Zhang, et al., J. Hazard. Mater. 448 (2023) 130946.

    70. [70]

      Z. Liu, S. Yang, Y. Yuan, et al., J. Hazard. Mater. 324 (2017) 583–592.

  • 加载中
    1. [1]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    2. [2]

      Shengtao JiangMengjiao XieLimin JinYifan RenWentian ZhengSiping JiYanbiao Liu . New insights into electrocatalytic singlet oxygen generation for effective and selective water decontamination. Chinese Chemical Letters, 2025, 36(5): 110293-. doi: 10.1016/j.cclet.2024.110293

    3. [3]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    4. [4]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    5. [5]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    6. [6]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    7. [7]

      Jin LiXin ChenAling ChenZhi-Qiang WangDengsong Zhang . Theoretical insight into the active sites for chlorobenzene oxidation: From phosphate to M3 clusters. Chinese Chemical Letters, 2025, 36(8): 110527-. doi: 10.1016/j.cclet.2024.110527

    8. [8]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    9. [9]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    10. [10]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    11. [11]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    12. [12]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    13. [13]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    16. [16]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    17. [17]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    18. [18]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    19. [19]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    20. [20]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Corrigendum to “Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics” [Chinese Chemical Letters 35 (2024) 109761]. Chinese Chemical Letters, 2025, 36(6): 110868-. doi: 10.1016/j.cclet.2025.110868

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return