Citation: Zeyang Yao, Xinru You, Xudong Wang, Yunze Kang, Liying Wang, Ziji Zhang. Stem cell-based hydrogel for the repair and regeneration of cartilage[J]. Chinese Chemical Letters, ;2025, 36(8): 110607. doi: 10.1016/j.cclet.2024.110607 shu

Stem cell-based hydrogel for the repair and regeneration of cartilage

    * Corresponding authors.
    E-mail addresses: wangly53@mail2.sysu.edu.cn (L. Wang), zhangziji@mail.sysu.edu.cn (Z. Zhang).
    1 These authors contributed equally to this work.
  • Received Date: 28 August 2024
    Revised Date: 23 October 2024
    Accepted Date: 1 November 2024
    Available Online: 1 November 2024

Figures(6)

  • Repairing and regenerating cartilage defects in osteoarthritis patients remains challenging. Traditional treatments primarily offer symptom relief without addressing the underlying progression of the disease. Stem cell therapies provide a promising solution, yet they face limitations such as short retention times, low survival rates in vivo, and insufficient extracellular matrix (ECM) production. Stem cell-based hydrogel therapy offers a controlled microenvironment that can mitigate these challenges and enhance cell therapy effectiveness. This review evaluates the advantages and limitations of various stem cell types and hydrogel materials, summarizing recent advances in their combination for cartilage repair. The potential of stem cell-hydrogel therapies is highlighted, along with the remaining challenges and future directions for improving their clinical application.
  • 加载中
    1. [1]

      S. Glyn-Jones, A.J.R. Palmer, R. Agricola, et al., Lancet. 386 (2015) 376–387.

    2. [2]

      B. Johnstone, M. Alini, M. Cucchiarini, et al., Eur. Cell Mater. 25 (2013) 248–267.  doi: 10.22203/eCM.v025a18

    3. [3]

      Q. Yao, X. Wu, C. Tao, et al., Signal Transduct. Target Ther. 8 (2023) 56.

    4. [4]

      J. Martel-Pelletier, A.J. Barr, F.M. Cicuttini, et al., Nat. Rev. Dis. Prim. 2 (2016) 16072.

    5. [5]

      D. Chen, J. Shen, W. Zhao, et al., Bone Res. 5 (2017) 16044.

    6. [6]

      L. Sharma, N. Engl. J. Med. 384 (2021) 51–59.  doi: 10.1056/nejmcp1903768

    7. [7]

      S. Safiri, A.A. Kolahi, E. Smith, et al., Ann. Rheum. Dis. 79 (2020) 819–828.  doi: 10.1136/annrheumdis-2019-216515

    8. [8]

      D.J. Hunter, D. Schofield, E. Callander, Nat. Rev. Rheumatol. 10 (2014) 437–441.  doi: 10.1038/nrrheum.2014.44

    9. [9]

      A. Galperin, R.A. Oldinski, S.J. Florczyk, et al., Adv. Healthc. Mater. 2 (2013) 872–883.  doi: 10.1002/adhm.201200345

    10. [10]

      R.S. Tuan, A.F. Chen, B.A. Klatt, J. Am. Acad. Orthop. Surg. 21 (2013) 303–311.

    11. [11]

      P.N. Chalmers, H. Vigneswaran, J.D. Harris, et al., Cartilage 4 (2013) 193–203.  doi: 10.1177/1947603513481603

    12. [12]

      D. Goyal, A. Goyal, S. Keyhani, et al., Arthroscopy 29 (2013) 1872–1878.

    13. [13]

      S.S. Lin, C.M. Bono, R. Treuting, et al., Foot Ankle Int. 21 (2000) 742–748.  doi: 10.1177/107110070002100905

    14. [14]

      W. Bartlett, J.A. Skinner, C.R. Gooding, et al., J. Bone Joint Surg. Br. 87 (2005) 640–645.

    15. [15]

      H.S. Vasiliadis, J. Wasiak, G. Salanti, Knee Surg. Sports Traumatol. Arthrosc. 18 (2010) 1645–1655.  doi: 10.1007/s00167-010-1050-3

    16. [16]

      L. Zhou, V.O. Gjvm, J. Malda, et al., Adv. Healthc. Mater. 9 (2020) e2001008.

    17. [17]

      Y.S. Zhang, A. Khademhosseini, Science 356 (2017) eaaf3627.

    18. [18]

      K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, et al., Biomaterials 73 (2015) 254–271.

    19. [19]

      S. Chen, P. Fu, R. Cong, et al., Gene. Dis. 2 (2015) 76–95.

    20. [20]

      C.B. Carballo, Y. Nakagawa, I. Sekiya, et al., Clin. Sport. Med. 36 (2017) 413–425.

    21. [21]

      A.R. Armiento, M.J. Stoddart, M. Alini, et al., Acta Biomater. 65 (2018) 1–20.

    22. [22]

      H. Muir, Bioessays. 17 (1995) 1039–1048.  doi: 10.1002/bies.950171208

    23. [23]

      A. Preitschopf, D. Schörghofer, K. Kinslechner, et al., Stem Cell. Transl. Med. 5 (2016) 580–590.  doi: 10.5966/sctm.2015-0262

    24. [24]

      M. Brittberg, P. Aglietti, R. Gambardella, et al., ICRS cartilage injury evaluation package, in: Proceedings of 3rd ICRS Meeting, Göteborg, Sweden, 2000, pp. 5–8.

    25. [25]

      A.J. Krych, D.B.F. Saris, M.J. Stuart, et al., J. Am. Acad. Orthop. Surg. 28 (2020) 914–922.  doi: 10.5435/jaaos-d-20-00266

    26. [26]

      Y. Xiong, B.-B. Mi, Z. Lin, et al., Mil. Med. Res. 9 (2022) 65.

    27. [27]

      E.A. Makris, A.H. Gomoll, K.N. Malizos, et al., Nat. Rev. Rheumatol. 11 (2015) 21–34.  doi: 10.1038/nrrheum.2014.157

    28. [28]

      A.F. Steinert, S.C. Ghivizzani, A. Rethwilm, et al., Arthritis Res. Ther. 9 (2007) 213.  doi: 10.1186/ar2195

    29. [29]

      M. Krampera, G. Pizzolo, G. Aprili, et al., Bone 39 (2006) 678–683.

    30. [30]

      A. Andrzejewska, B. Lukomska, M. Janowski, Stem Cell. 37 (2019) 855–864.  doi: 10.1002/stem.3016

    31. [31]

      L. Moroni, P.M. Fornasari, J. Cell Physiol. 228 (2013) 680–687.  doi: 10.1002/jcp.24223

    32. [32]

      D. Paul, S.M. Samuel, N. Maulik, Antioxid. Redox Signal. 11 (2009) 1841–1855.  doi: 10.1089/ars.2009.2455

    33. [33]

      Y. Yang, Y. Wu, D. Yang, et al., Bioact. Mater. 27 (2023) 98–112.

    34. [34]

      J. Li, M. Pei, Tissue Eng. Part B: Rev. 18 (2012) 270–287.  doi: 10.1089/ten.teb.2011.0583

    35. [35]

      S. Grogan, J. Kopcow, D. D'Lima, Stem Cell. Transl. Med. 11 (2022) 1186–1195.  doi: 10.1093/stcltm/szac078

    36. [36]

      Q. Lian, E. Lye, K.Suan Yeo, et al., Stem Cell. 25 (2007) 425–436.  doi: 10.1634/stemcells.2006-0420

    37. [37]

      X. Chen, X.-H. Song, Z. Yin, et al., Stem Cell. 27 (2009) 1276–1287.  doi: 10.1002/stem.61

    38. [38]

      Y. Jung, G. Bauer, J.A. Nolta, Stem Cell. 30 (2012) 42–47.  doi: 10.1002/stem.727

    39. [39]

      L.G. Villa-Diaz, S.E. Brown, Y. Liu, et al., Stem Cell. 30 (2012) 1174–1181.  doi: 10.1002/stem.1084

    40. [40]

      H.M. Blau, G.Q. Daley, N. Engl. J. Med. 380 (2019) 1748–1760.  doi: 10.1056/nejmra1716145

    41. [41]

      E. Koyama, Y. Shibukawa, M. Nagayama, et al., Dev. Biol. 316 (2008) 62–73.

    42. [42]

      Y. Li, J. Li, Y. Chang, et al., Chin. Chem. Lett. 35 (2024) 109414.

    43. [43]

      A.H. Gomoll, G. Filardo, L. de Girolamo, et al., Knee Surg. Sports Traumatol. Arthrosc. 20 (2012) 450–466.  doi: 10.1007/s00167-011-1780-x

    44. [44]

      L. da Silva Meirelles, T.T. Sand, R.J. Harman, et al., Tissue Eng. Part A 15 (2009) 221–229.  doi: 10.1089/ten.tea.2008.0103

    45. [45]

      K.-Y. Saw, A. Anz, C. Siew-Yoke Jee, et al., Arthroscopy 29 (2013) 684–694.

    46. [46]

      A. Banfi, A. Muraglia, B. Dozin, et al., Exp. Hematol. 28 (2000) 707–715.

    47. [47]

      M.A. Baxter, R.F. Wynn, S.N. Jowitt, et al., Stem Cell. 22 (2004) 675–682.

    48. [48]

      L. He, T. He, J. Xing, et al., Stem Cell Res. Ther. 11 (2020) 276.

    49. [49]

      A. Vega, M. Angel Martin-Ferrero, F. Del Canto, et al., Transplantation 99 (2015) 1681–1690.

    50. [50]

      L. Orozco, A. Munar, R. Soler, et al., Transplantation 95 (2013) 1535–1541.

    51. [51]

      R. Bastos, M. Mathias, R. Andrade, et al., Knee Surg. Sport. Traumatol. Arthrosc. 26 (2018) 3342–3350.  doi: 10.1007/s00167-018-4883-9

    52. [52]

      J. Chahal, A. Gómez-Aristizábal, K. Shestopaloff, et al., Stem Cell. Transl. Med. 8 (2019) 746–757.  doi: 10.1002/sctm.18-0183

    53. [53]

      M.F. Pittenger, A.M. Mackay, S.C. Beck, et al., Science 284 (1999) 143–147.

    54. [54]

      E.T. Hurley, Y. Yasui, A.L. Gianakos, et al., Knee Surg. Sport. Traumatol. Arthrosc. 26 (2018) 3499–3507.  doi: 10.1007/s00167-018-4955-x

    55. [55]

      M. Zaim, S. Karaman, G. Cetin, et al., Ann. Hematol. 91 (2012) 1175–1186.  doi: 10.1007/s00277-012-1438-x

    56. [56]

      Y. Li, N. Charif, D. Mainard, et al., Biomed. Mater. Eng. 24 (2014) 47–52.

    57. [57]

      F. Bruna, D. Contador, P. Conget, et al., Stem Cell. Int. 2016 (2016) 1461648.

    58. [58]

      C.H. Jo, Y.G. Lee, W.H. Shin, et al., Stem Cell. 32 (2014) 1254–1266.  doi: 10.1002/stem.1634

    59. [59]

      T.S. de Windt, L.A. Vonk, I.C.M. Slaper-Cortenbach, et al., Stem Cell. 35 (2017) 256–264.  doi: 10.1002/stem.2475

    60. [60]

      T. Chen, D. Xiao, Y. Li, et al., Chin. Chem. Lett. 33 (2022) 2517–2521.

    61. [61]

      J. Pak, J.H. Lee, N. Pak, et al., Int. J. Mol. Sci. 19 (2018) 2146.  doi: 10.3390/ijms19072146

    62. [62]

      P.B. Fodor, S.G. Paulseth, Aesthet. Surg. J. 36 (2016) 229–236.  doi: 10.1093/asj/sjv135

    63. [63]

      S. Khaldoyanidi, Cell Stem Cell 2 (2008) 198–200.

    64. [64]

      A. Sohni, C.M. Verfaillie, Stem Cell. Int. 2013 (2013) 130763.

    65. [65]

      W. Zhou, J. Lin, K. Zhao, et al., Am. J. Sport. Med. 47 (2019) 1722–1733.  doi: 10.1177/0363546519848678

    66. [66]

      Z.-J. Wei, Q.-Q. Wang, Z.-G. Cui, et al., Ann. Transl. Med. 9 (2021) 452.  doi: 10.21037/atm-20-5116

    67. [67]

      M. Jeyaraman, S. Muthu, P.A. Ganie, Cartilage 13 (2021) 1532S–1547S.  doi: 10.1177/1947603520951623

    68. [68]

      L. Lu, C. Dai, Z. Zhang, et al., Stem Cell Res. Ther. 10 (2019) 143.

    69. [69]

      W.-S. Lee, H.J. Kim, K.-I. Kim, et al., Stem Cell. Transl. Med. 8 (2019) 504–511.  doi: 10.1002/sctm.18-0122

    70. [70]

      B. Sadri, M. Hassanzadeh, A. Bagherifard, et al., Stem Cell Res. Ther. 14 (2023) 162.

    71. [71]

      J.P. Wang, Y.T. Liao, S.H. Wu, et al., Stem Cell Rev. Rep. 17 (2021) 1796–1809.  doi: 10.1007/s12015-021-10169-z

    72. [72]

      L.L. Black, J. Gaynor, D. Gahring, et al., Vet. Ther. 8 (2007) 272–284.

    73. [73]

      A.D. Martin, M.Z. Daniel, D.T. Drinkwater, et al., Int. J. Obes. Relat. Metab. Disord. 18 (1994) 79–83.

    74. [74]

      K.A. Iwen, A.-C. Priewe, M. Winnefeld, et al., Exp. Dermatol. 23 (2014) 395–400.  doi: 10.1111/exd.12406

    75. [75]

      W.J.F.M. Jurgens, M.J. Oedayrajsingh-Varma, M.N. Helder, et al., Cell Tissue Res. 332 (2008) 415–426.  doi: 10.1007/s00441-007-0555-7

    76. [76]

      D. Miller, A. Grant, S. Durgam, et al., Am. J. Phys. Med. Rehabil. 101 (2022) 879–887.  doi: 10.1097/phm.0000000000001930

    77. [77]

      D. Baksh, R. Yao, R.S. Tuan, Stem Cell. 25 (2007) 1384–1392.  doi: 10.1634/stemcells.2006-0709

    78. [78]

      S. Roura, J.-M. Pujal, C. Gálvez-Montón, et al., Stem Cell Res. Ther. 6 (2015) 123.

    79. [79]

      L. Avercenc-Léger, P. Guerci, J.-M. Virion, et al., Stem Cell Res. Ther. 8 (2017) 161.

    80. [80]

      S. Kern, H. Eichler, J. Stoeve, et al., Stem Cell. 24 (2006) 1294–1301.  doi: 10.1634/stemcells.2005-0342

    81. [81]

      X. Zhang, M. Hirai, S. Cantero, et al., J. Cell Biochem. 112 (2011) 1206–1218.  doi: 10.1002/jcb.23042

    82. [82]

      C.Y. Fong, A. Subramanian, K. Gauthaman, et al., Stem Cell Rev. Rep. 8 (2012) 195–209.  doi: 10.1007/s12015-011-9289-8

    83. [83]

      C.Y. Fong, L.L. Chak, A. Biswas, et al., Stem Cell Rev. Rep. 7 (2011) 1–16.  doi: 10.1007/s12015-010-9166-x

    84. [84]

      J. Bartolucci, F.J. Verdugo, P.L. González, et al., Circ. Res. 121 (2017) 1192–1204.

    85. [85]

      P.L. González, C. Carvajal, J. Cuenca, et al., Stem Cell. Transl. Med. 4 (2015) 1109–1121.  doi: 10.5966/sctm.2015-0022

    86. [86]

      S.M. Richardson, G. Kalamegam, P.N. Pushparaj, et al., Methods 99 (2016) 69–80.

    87. [87]

      J. Matas, M. Orrego, D. Amenabar, et al., Stem Cell. Transl. Med. 8 (2019) 215–224.  doi: 10.1002/sctm.18-0053

    88. [88]

      Y.-B. Park, C.-W. Ha, C.-H. Lee, et al., Stem Cell. Transl. Med. 6 (2017) 613–621.  doi: 10.5966/sctm.2016-0157

    89. [89]

      M. Zavatti, F. Beretti, F. Casciaro, et al., Biofactors 46 (2020) 106–117.  doi: 10.1002/biof.1576

    90. [90]

      H.-E. Lu, M.-S. Tsai, Y.-C. Yang, et al., Exp. Cell Res. 317 (2011) 1895–1903.

    91. [91]

      S. Arnhold, S. Glüer, K. Hartmann, et al., Stem Cell. Int. 2011 (2011) 715341.

    92. [92]

      P.A.B. Klemmt, V. Vafaizadeh, B. Groner, Expert. Opin. Biol. Ther. 11 (2011) 1297–1314.  doi: 10.1517/14712598.2011.587800

    93. [93]

      M. Cananzi, P. De Coppi, Organogenesis 8 (2012) 77–88.  doi: 10.4161/org.22426

    94. [94]

      T. Maraldi, F. Beretti, M. Guida, et al., Stem Cell. Transl. Med. 4 (2015) 539–547.  doi: 10.5966/sctm.2014-0266

    95. [95]

      M. Rosner, K. Schipany, M. Hengstschläger, Stem Cell. Transl. Med. 3 (2014) 553–559.  doi: 10.5966/sctm.2013-0194

    96. [96]

      A. Bajek, J. Olkowska, M. Walentowicz-Sadłecka, et al., J. Cell Biochem. 118 (2017) 116–126.  doi: 10.1002/jcb.25618

    97. [97]

      A. Inui, T. Iwakura, A.H. Reddi, Cells 1 (2012) 994–1009.  doi: 10.3390/cells1040994

    98. [98]

      F. Yang, D. Zhang, Q. Zhou, et al., Chin. Chem. Lett. 33 (2022) 2901–2905.

    99. [99]

      F.A. Petrigliano, N.Q. Liu, S. Lee, et al., NPJ. Regen. Med. 6 (2021) 77.

    100. [100]

      Y. Wang, Z.B. Han, Y.P. Song, et al., Stem Cell. Int. 2012 (2012) 652034.

    101. [101]

      S. Roberts, P. Genever, A. McCaskie, et al., Regen. Med. 6 (2011) 351–366.  doi: 10.2217/rme.11.21

    102. [102]

      W.S. Toh, E.H. Lee, T. Cao, Stem Cell Rev. Rep. 7 (2011) 544–559.  doi: 10.1007/s12015-010-9222-6

    103. [103]

      M. Yoshihara, Y. Hayashizaki, Y. Murakawa, Stem Cell Rev. Rep. 13 (2017) 7–16.  doi: 10.1007/s12015-016-9680-6

    104. [104]

      S. Moradi, H. Mahdizadeh, T. Šarić, et al., Stem Cell. Res. Ther. 10 (2019) 341.

    105. [105]

      G. Liu, B.T. David, M. Trawczynski, et al., Stem Cell. Rev. Rep. 16 (2020) 3–32.  doi: 10.1007/s12015-019-09935-x

    106. [106]

      X. Liu, W. Li, X. Fu, et al., Front. Immunol. 8 (2017) 645.

    107. [107]

      A.E. Omole, A.O.J. Fakoya, PeerJ. 6 (2018) e4370.  doi: 10.7717/peerj.4370

    108. [108]

      M. Csobonyeiova, S. Polak, A. Nicodemou, et al., Biomedicines 9 (2021) 186.  doi: 10.3390/biomedicines9020186

    109. [109]

      A. Kamaraj, H. Kyriacou, K.T.M. Seah, et al., Cytotherapy 23 (2021) 647–661.

    110. [110]

      M. Lach, T. Trzeciak, M. Richter, et al., J. Tissue Eng. 5 (2014) 2041731414552701.

    111. [111]

      Y. Nam, Y.A. Rim, J. Lee, et al., Stem Cell. Int. 2018 (2018) 8490489.

    112. [112]

      Y. Liu, M. Zhu, M. Meng, et al., Chin. Chem. Lett. 34 (2023) 107583.

    113. [113]

      S. Nedunchezian, P. Banerjee, C.Y. Lee, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 124 (2021) 112072.

    114. [114]

      J. Lam, N.F. Truong, T. Segura, Acta Biomater. 10 (2014) 1571–1580.

    115. [115]

      H. Zhu, N. Mitsuhashi, A. Klein, et al., Stem Cell. 24 (2006) 928–935.  doi: 10.1634/stemcells.2005-0186

    116. [116]

      C. Chung, J.A. Burdick, Tissue Eng. Part A 15 (2009) 243–254.  doi: 10.1089/ten.tea.2008.0067

    117. [117]

      J.M. Lamo-Espinosa, G. Mora, J.F. Blanco, et al., J. Transl. Med. 16 (2018) 213.

    118. [118]

      K.-Y. Saw, A.W. Anz, R.C.-S. Ng, et al., Arthroscopy 37 (2021) 2502–2517.

    119. [119]

      R.B. Jakobsen, A. Shahdadfar, F.P. Reinholt, et al., Knee Surg. Sports Traumatol. Arthrosc. 18 (2010) 1407–1416.  doi: 10.1007/s00167-009-1017-4

    120. [120]

      M. Kim, I.E. Erickson, A.H. Huang, et al., Tissue Eng. Part A 24 (2018) 1693–1703.  doi: 10.1089/ten.tea.2017.0520

    121. [121]

      Q. Feng, S. Lin, K. Zhang, et al., Acta Biomater. 53 (2017) 329–342.

    122. [122]

      T.N. Snyder, K. Madhavan, M. Intrator, et al., J. Biol. Eng. 8 (2014) 10.

    123. [123]

      S. Cheng, M. Pan, D. Hu, et al., Chin. Chem. Lett. 34 (2023) 108276.

    124. [124]

      N. Iwasaki, Y. Kasahara, S. Yamane, et al., Polymers (Basel) 3 (2011) 100–113.

    125. [125]

      K.Y. Lee, D.J. Mooney, Chem. Rev. 101 (2001) 1869–1880.

    126. [126]

      S. Yamane, N. Iwasaki, T. Majima, et al., Biomaterials 26 (2005) 611–619.

    127. [127]

      S. Hsu, S.W. Whu, S.-C. Hsieh, et al., Artif. Organ. 28 (2004) 693–703.

    128. [128]

      J. Yang, Y.S. Zhang, K. Yue, et al., Acta Biomater. 57 (2017) 1–25.

    129. [129]

      E.J. Sheehy, T. Mesallati, T. Vinardell, et al., Acta Biomater. 13 (2015) 245–253.

    130. [130]

      G.R. Ragetly, G.J. Slavik, B.T. Cunningham, et al., J. Biomed. Mater. Res. A 93 (2010) 46–55.  doi: 10.1002/jbm.a.32514

    131. [131]

      B. Choi, S. Kim, B. Lin, et al., Acta Biomater. 12 (2015) 30–41.

    132. [132]

      S. Gao, P. Zhao, C. Lin, et al., Tissue Eng. Part A 20 (2014) 1271–1284.  doi: 10.1089/ten.tea.2012.0773

    133. [133]

      M. Giretova, L. Medvecky, E. Petrovova, et al., Appl. Biochem. Biotechnol. 189 (2019) 556–575.  doi: 10.1007/s12010-019-03021-1

    134. [134]

      Z. Yang, Y. Wu, C. Li, et al., Tissue Eng. Part A 18 (2012) 242–251.  doi: 10.1089/ten.tea.2011.0315

    135. [135]

      S. Huang, X. Song, T. Li, et al., Stem Cell Res. Ther. 8 (2017) 264.

    136. [136]

      G.R. Ragetly, D.J. Griffon, H.-B. Lee, et al., Acta Biomater. 6 (2010) 1430–1436.

    137. [137]

      Y. Huang, D. Seitz, F. König, et al., Int. J. Mol. Sci. 20 (2019) 4487.  doi: 10.3390/ijms20184487

    138. [138]

      G.C.B. Medrado, C.B. Machado, P. Valerio, et al., Biomed. Mater. 1 (2006) 155–161.  doi: 10.1088/1748-6041/1/3/010

    139. [139]

      N. Gao, Y. Zhang, Z. Yang, et al., Chin. Chem. Lett. 35 (2024) 108820.

    140. [140]

      B. Trica, C. Delattre, F. Gros, et al., Mar. Drugs 17 (2019) 405.  doi: 10.3390/md17070405

    141. [141]

      R. Ahmad Raus, W.M.F. Wan Nawawi, R.R. Nasaruddin, Asian J. Pharm. Sci. 16 (2021) 280–306.

    142. [142]

      N. Sahu, P. Agarwal, F. Grandi, et al., Adv. Healthc. Mater. 10 (2021) e2002118.

    143. [143]

      M.H. Park, R. Subbiah, M.J. Kwon, et al., Carbohydr. Polym. 202 (2018) 488–496.

    144. [144]

      D. El Khoury, H.D. Goff, S. Berengut, et al., Eur. J. Clin. Nutr. 68 (2014) 613–618.  doi: 10.1038/ejcn.2014.53

    145. [145]

      T. Zehnder, B. Sarker, A.R. Boccaccini, et al., Biofabrication 7 (2015) 025001.  doi: 10.1088/1758-5090/7/2/025001

    146. [146]

      C.H. Jang, Y. Koo, G. Kim, Carbohydr. Polym. 248 (2020) 116776.

    147. [147]

      S. Khatab, M.J. Leijs, G. van Buul, et al., Cell Biol. Toxicol. 36 (2020) 553–570.  doi: 10.1007/s10565-020-09532-6

    148. [148]

      K. Witte, M.C. de Andrés, J. Wells, et al., Biofabrication 12 (2020) 045034.  doi: 10.1088/1758-5090/abb653

    149. [149]

      Z. Huang, P. Nooeaid, B. Kohl, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 50 (2015) 160–172.

    150. [150]

      F. Ma, X. Pang, B. Tang, Carbohydr. Polym. 206 (2019) 229–237.

    151. [151]

      S. Jahangir, D. Eglin, N. Pötter, et al., Stem Cell Res. Ther. 11 (2020) 436.

    152. [152]

      K. Ma, A.L. Titan, M. Stafford, et al., Acta Biomater. 8 (2012) 3754–3764.

    153. [153]

      Y.Y. Lin, C.Y. Kuan, C.T. Chang, et al., Int. J. Mol. Sci. 24 (2023) 7062.  doi: 10.3390/ijms24087062

    154. [154]

      C. Krömmelbein, M. Mütze, R. Konieczny, et al., Carbohydr. Polym. 263 (2021) 117970.

    155. [155]

      P. Zarrintaj, S. Manouchehri, Z. Ahmadi, et al., Carbohydr. Polym. 187 (2018) 66–84.

    156. [156]

      G.R. López-Marcial, A.Y. Zeng, C. Osuna, et al., ACS Biomater. Sci. Eng. 4 (2018) 3610–3616.  doi: 10.1021/acsbiomaterials.8b00903

    157. [157]

      M.A. Salati, J. Khazai, A.M. Tahmuri, et al., Polymers 12 (2020) 1150.  doi: 10.3390/polym12051150

    158. [158]

      A.A. Amini, L.S. Nair, Biomed. Mater. 7 (2012) 024105.  doi: 10.1088/1748-6041/7/2/024105

    159. [159]

      P. Zarrintaj, B. Bakhshandeh, I. Rezaeian, et al., Sci. Rep. 7 (2017) 17187.

    160. [160]

      A.H. Huang, M. Yeger-McKeever, A. Stein, et al., Osteoarthrit. Cartil. 16 (2008) 1074–1082.

    161. [161]

      A.H. Huang, A. Stein, R.L. Mauck, Tissue Eng. Part A 16 (2010) 2699–2708.  doi: 10.1089/ten.tea.2010.0042

    162. [162]

      A. Forget, A. Blaeser, F. Miessmer, et al., Adv. Healthc. Mater. 6 (2017) 1700255.

    163. [163]

      Y. Ge, Y. Li, Z. Wang, et al., Front. Bioeng. Biotechnol. 9 (2021) 697281.

    164. [164]

      T. Vinardell, S.D. Thorpe, C.T. Buckley, et al., Ann. Biomed. Eng. 37 (2009) 2556–2565.  doi: 10.1007/s10439-009-9791-1

    165. [165]

      K.L. Moffat, K. Goon, F.T. Moutos, et al., Macromol. Biosci. 18 (2018) e1800140.

    166. [166]

      M. Oliver-Ferrándiz, L. Milián, M. Sancho-Tello, et al., Biomedicines 9 (2021) 834.  doi: 10.3390/biomedicines9070834

    167. [167]

      A.H. Huang, A. Stein, R.S. Tuan, et al., Tissue Eng. Part A 15 (2009) 3461–3472.  doi: 10.1089/ten.tea.2009.0198

    168. [168]

      Y.-H. Yang, A.J. Lee, G.A. Barabino, Stem Cell. Transl. Med. 1 (2012) 843–854.  doi: 10.5966/sctm.2012-0083

    169. [169]

      K.M. Pawelec, S.M. Best, R.E. Cameron, J. Mater. Chem. B 4 (2016) 6484–6496.

    170. [170]

      W. Zhao, X. Jin, Y. Cong, et al., J. Chem. Technol. Biotechnol. 88 (2013) 327–339.  doi: 10.1002/jctb.3970

    171. [171]

      U. Nöth, L. Rackwitz, A. Heymer, et al., J. Biomed. Mater. Res. A 83 (2007) 626–635.  doi: 10.1002/jbm.a.31254

    172. [172]

      C.H. Lee, A. Singla, Y. Lee, Int. J. Pharm. 221 (2001) 1–22.

    173. [173]

      Z. Piperigkou, D. Bainantzou, N. Makri, et al., Mol. Biol. Rep. 50 (2023) 5125–5135.  doi: 10.1007/s11033-023-08461-x

    174. [174]

      X. Chen, F. Zhang, X. He, et al., Injury 44 (2013) 540–549.

    175. [175]

      L. Valot, M. Maumus, L. Brunel, et al., Gels 7 (2021) 73.  doi: 10.3390/gels7020073

    176. [176]

      Q. Liu, W. Dai, Y. Gao, et al., Acta Biomater. 154 (2022) 194–211.

    177. [177]

      L. Zhang, T. Yuan, L. Guo, et al., J. Biomed. Mater. Res. A 100 (2012) 2717–2725.  doi: 10.1002/jbm.a.34194

    178. [178]

      J. Liu, C. Yu, Y. Chen, et al., J. Mater. Chem. B 5 (2017) 9130–9140.

    179. [179]

      A.B. Bello, D. Kim, D. Kim, et al., Tissue Eng. Part B: Rev. 26 (2020) 164–180.  doi: 10.1089/ten.teb.2019.0256

    180. [180]

      M.C. Echave, L. Saenz del Burgo, J.L. Pedraz, et al., Curr. Pharm. Des. 23 (2017) 3567–3584.

    181. [181]

      F. Gao, Z. Xu, Q. Liang, et al., Adv. Sci. 6 (2019) 1900867.

    182. [182]

      L. Han, J. Xu, X. Lu, et al., J. Mater. Chem. B 5 (2017) 731–741.

    183. [183]

      K. Song, L. Li, W. Li, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 55 (2015) 384–392.

    184. [184]

      H. Lin, A.W.-M. Cheng, P.G. Alexander, et al., Tissue Eng. Part A 20 (2014) 2402–2411.  doi: 10.1089/ten.tea.2013.0642

    185. [185]

      X. Liang, C. Huang, H. Liu, et al., Chin. Chem. Lett. 35 (2024) 109442.

    186. [186]

      M.C. Echave, R. Hernáez-Moya, L. Iturriaga, et al., Expert Opin. Biol. Ther. 19 (2019) 773–779.  doi: 10.1080/14712598.2019.1610383

    187. [187]

      L.S. Wang, C. Du, W.S. Toh, et al., Biomaterials 35 (2014) 2207–2217.

    188. [188]

      N. Tsuzuki, J. Seo, K. Yamada, et al., Can. Vet. J. 54 (2013) 573–580.

    189. [189]

      B.J. Klotz, D. Gawlitta, A.J.W.P. Rosenberg, et al., Trend. Biotechnol. 34 (2016) 394–407.

    190. [190]

      L. Pang, H. Jin, Z. Lu, et al., Adv. Healthc. Mater. 12 (2023) e2300315.

    191. [191]

      P. Chen, L. Zheng, Y. Wang, et al., Theranostics 9 (2019) 2439–2459.  doi: 10.7150/thno.31017

    192. [192]

      A.D. Dikina, H.V. Almeida, M. Cao, et al., ACS Biomater. Sci. Eng. 3 (2017) 1426–1436.  doi: 10.1021/acsbiomaterials.6b00654

    193. [193]

      A.K. Kudva, A.D. Dikina, F.P. Luyten, et al., Acta Biomater. 90 (2019) 287–299.

    194. [194]

      Y.H. Chang, K.C. Wu, C.C. Wang, et al., J. Biomed. Mater. Res. A 108 (2020) 2069–2079.  doi: 10.1002/jbm.a.36966

    195. [195]

      B. Conrad, L.H. Han, F. Yang, Tissue Eng. Part A 24 (2018) 1631–1640.  doi: 10.1089/ten.tea.2018.0011

    196. [196]

      J. Melke, S. Midha, S. Ghosh, et al., Acta Biomater. 31 (2016) 1–16.

    197. [197]

      D.N. Rockwood, R.C. Preda, T. Yücel, et al., Nat. Protoc. 6 (2011) 1612–1631.  doi: 10.1038/nprot.2011.379

    198. [198]

      Z. Zhou, J. Cui, S. Wu, et al., Theranostics. 12 (2022) 5103–5124.  doi: 10.7150/thno.74548

    199. [199]

      R.M. Amsar, A. Barlian, H. Judawisastra, et al., Future Sci. OA 7 (2021) FSO734.

    200. [200]

      O. Hasturk, K.E. Jordan, J. Choi, et al., Biomaterials 232 (2020) 119720.

    201. [201]

      Y. Kambe, K. Yamamoto, K. Kojima, et al., Biomaterials 31 (2010) 7503–7511.

    202. [202]

      A. Barlian, H. Judawisastra, A. Ridwan, et al., Sci. Rep. 10 (2020) 19449.

    203. [203]

      M. Zang, Q. Zhang, G. Davis, et al., Acta Biomater. 7 (2011) 3422–3431.

    204. [204]

      N. Bhardwaj, S.C. Kundu, Biomaterials 33 (2012) 2848–2857.

    205. [205]

      J. Jaipaew, P. Wangkulangkul, J. Meesane, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 64 (2016) 173–182.

    206. [206]

      N. Sawatjui, T. Damrongrungruang, W. Leeanansaksiri, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 52 (2015) 90–96.

    207. [207]

      N. Bhattarai, F.A. Matsen, M. Zhang, Macromol. Biosci. 5 (2005) 107–111.  doi: 10.1002/mabi.200400140

    208. [208]

      B. Reid, M. Gibson, A. Singh, et al., J Tissue Eng. Regen. Med. 9 (2015) 315–318.  doi: 10.1002/term.1688

    209. [209]

      A.X. Sun, H. Lin, M.R. Fritch, et al., Acta Biomater. 58 (2017) 302–311.

    210. [210]

      S. Lee, E. Choi, M.-J. Cha, et al., Oxid. Med. Cell Longev. 2015 (2015) 632902.

    211. [211]

      A.K. Kudva, F.P. Luyten, J. Patterson, J. Biomed. Mater. Res. A 106 (2018) 33–42.  doi: 10.1002/jbm.a.36208

    212. [212]

      H. Yao, J. Xue, Q. Wang, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 79 (2017) 661–670.

    213. [213]

      M.L. Kang, S.Y. Jeong, G.I. Im, Tissue Eng. Part A 23 (2017) 630–639.  doi: 10.1089/ten.tea.2016.0524

    214. [214]

      E. Filová, M. Rampichová, A. Litvinec, et al., Int. J. Pharm. 447 (2013) 139–149.

    215. [215]

      D. Harpaz, T. Axelrod, A.L. Yitian, et al., Materials 12 (2019) 343.  doi: 10.3390/ma12030343

    216. [216]

      Y. Lu, X. Liu, G. Luo, J. Appl. Polym. Sci. 134 (2017) 45111.

    217. [217]

      J. Chen, P. An, H. Zhang, et al., Biomed. Mater. 17 (2021) 014106.

    218. [218]

      D.B.F. Saris, J. Vanlauwe, J. Victor, et al., Am. J. Sport. Med. 36 (2008) 235–246.  doi: 10.1177/0363546507311095

    219. [219]

      H. Dashtdar, M.R. Murali, A.A. Abbas, et al., Knee Surg. Sport. Traumatol. Arthrosc. 23 (2015) 1368–1377.  doi: 10.1007/s00167-013-2723-5

    220. [220]

      L. Peng, Y. Zhou, W. Lu, et al., BMC Musculoskelet. Disord. 20 (2019) 257.

    221. [221]

      X. Yu, G. Qian, S. Chen, et al., Carbohydr. Polym. 159 (2017) 20–28.

    222. [222]

      X. Chen, S. Huang, Y. Niu, et al., Tissue Eng. Regen. Med. 21 (2024) 171–183.  doi: 10.1007/s13770-023-00574-5

    223. [223]

      C. Edwall-Arvidsson, J. Wroblewski, Anat. Embryol. (Berl.) 193 (1996) 453–461.

    224. [224]

      Y.T. Men, Y.L. Jiang, L. Chen, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 78 (2017) 79–87.

    225. [225]

      A. Guermazi, D. Hayashi, F.W. Roemer, et al., Arthrit. Rheumatol. 69 (2017) 560–564.  doi: 10.1002/art.39970

  • 加载中
    1. [1]

      Hongyi LiHuiyun WenHe ZhangJin LiXiang CaoJiaqing ZhangYutao ZhengSaipeng HuangWeiming XueXiaojun Cai . Polymeric micelle-hydrogel composites design for biomedical applications. Chinese Chemical Letters, 2025, 36(5): 110072-. doi: 10.1016/j.cclet.2024.110072

    2. [2]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    3. [3]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    4. [4]

      Yulin ChenGuangchao WangFengjin ZhouZhifeng YinFuming ShenWeizong WengHao ZhangYingying JiangXinru LiuYonghui DengYuan ChenKe XuJiacan Su . Targeting TRPA1 with liposome-encapsulated drugs anchored to microspheres for effective osteoarthritis treatment. Chinese Chemical Letters, 2025, 36(5): 110053-. doi: 10.1016/j.cclet.2024.110053

    5. [5]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    6. [6]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    7. [7]

      Zhuan ChenBo YangJun LiKun DuJiangchen FuXiao WuJiazhen CaoMingyang Xing . Environmentally safe storage and sustained release of hydrogen peroxide utilizing commercial hydrogel. Chinese Chemical Letters, 2025, 36(6): 110320-. doi: 10.1016/j.cclet.2024.110320

    8. [8]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Xiaoyu HouMingyang LiuHu WuNan WangXu ZhaoXifeng QinXiaomin SuHanwei HuangZihan MaJiahao LiuOnder ErgonulFüsun CanWei LiuZhiqing PangFunan Liu . Differential releasing hydrogel loaded with oncolytic viruses and anti-CAFs drug to enhance oncology therapeutic efficacy. Chinese Chemical Letters, 2025, 36(5): 110106-. doi: 10.1016/j.cclet.2024.110106

    11. [11]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    12. [12]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    13. [13]

      Hui LiuXi XiangJian-Bo HuangBi-Hui ZhuLi-Yun WangYuan-Jiao TangFang-Xue DuLing LiFeng YanLang MaLi Qiu . Corrigendum to "Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis" [Chinese Chemical Letters 32 (2021) 1759-1764]. Chinese Chemical Letters, 2025, 36(2): 110562-. doi: 10.1016/j.cclet.2024.110562

    14. [14]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    15. [15]

      Ruijun SongHuixu XieGuiting Liu . Advances of MXene-based hydrogels for chronic wound healing. Chinese Chemical Letters, 2025, 36(7): 110442-. doi: 10.1016/j.cclet.2024.110442

    16. [16]

      Aijia ZhangGuiyuan ZhaoGuangli XiangRui ChenYu DongQijie DiaoJialin WangXiaohui LinWenxuan ZengTianze JiangJun WuXia Zhao . Barnacle-inspired chitosan glycerin gel for skin protection and wound healing in harsh environments. Chinese Chemical Letters, 2025, 36(8): 110767-. doi: 10.1016/j.cclet.2024.110767

    17. [17]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    18. [18]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    19. [19]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    20. [20]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

Metrics
  • PDF Downloads(0)
  • Abstract views(24)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return