Citation: Wenya Chi, Ruiyao Liu, Wenbo Zhou, Weilin Li, Yuan Yu. The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries[J]. Chinese Chemical Letters, ;2025, 36(8): 110587. doi: 10.1016/j.cclet.2024.110587 shu

The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries

    * Corresponding author.
    E-mail address: pharmyuu@163.com (Y. Yu).
  • Received Date: 8 July 2024
    Revised Date: 22 October 2024
    Accepted Date: 28 October 2024
    Available Online: 29 October 2024

Figures(6)

  • Neural injuries can be induced by various neurological disorders and traumas, such as brain and spinal cord injuries, cerebrovascular diseases, and neurodegeneration. Due to the designable physicochemical properties, biomaterials are applied for various purposes in neural repair, including promoting axonal regeneration, reducing glial scar formation, delivering drugs, and providing temporary mechanical support to the injured tissue. They need to match the extracellular matrix (ECM) environment, support three-dimensional (3D) cell growth, repair the cellular microenvironment, mimic the tissue's biomechanical forces, and possess biodegradability and plasticity suitable for local intracavity applications. Meanwhile, functionalized biomaterials have been conducted to mimic the structural components of cellular ecological niches and the specific functions of the ECM. They can be engineered to carry a variety of bioactive components, such as stem cells and extracellular vesicles, which are used in neuroscience-related tissue engineering. Researchers also have developed biomaterial-based brain-like organs for high-throughput drug screening and pathological mechanistic studies. This review will discuss the interactions between biomaterials and cells, as well as the advances in neural injuries and engineered microtissues.
  • 加载中
    1. [1]

      P.M. George, G.K. Steinberg, Neuron 87 (2015) 297–309.

    2. [2]

      W. Yu, E. Gong, B. Liu, et al., Chin. Chem. Lett. 34 (2023) 108205.

    3. [3]

      R. Sullivan, T. Dailey, K. Duncan, N. Abel, C.V. Borlongan, Int. J. Mol. Sci. 17 (2016) 2101.  doi: 10.3390/ijms17122101

    4. [4]

      B.N. Dugger, D.W. Dickson, Cold Spring Harb. Perspect. Biol. 9 (2017) a028035.

    5. [5]

      M.E. Harley-Troxell, R. Steiner, R.C. Advincula, D.E. Anderson, M. Dhar, Polymers (Basel) 15 (2023) 3685.  doi: 10.3390/polym15183685

    6. [6]

      H.V. Unadkat, M. Hulsman, K. Cornelissen, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 16565–16570.  doi: 10.1073/pnas.1109861108

    7. [7]

      D.E. Discher, D.J. Mooney, P.W. Zandstra, Science 324 (2009) 1673–1677.  doi: 10.1126/science.1171643

    8. [8]

      N. Tulina, E. Matunis, Science 294 (2001) 2546–2549.

    9. [9]

      L. Zhang, Q.S. Zuo, D. Li, et al., J. Integr. Agric. 14 (2015) 939–948.

    10. [10]

      L. Chen, Z. Yao, S. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107925.

    11. [11]

      Y. Yang, K. Kulangara, R.T.S. Lam, R. Dharmawan, K.W. Leong, ACS Nano 6 (2012) 8591–8598.  doi: 10.1021/nn301713d

    12. [12]

      C. Ottone, B. Krusche, A. Whitby, et al., Nat. Cell Biol. 16 (2014) 1045–1056.  doi: 10.1038/ncb3045

    13. [13]

      D.S. Benoit, M.P. Schwartz, A.R. Durney, K.S. Anseth, Nat. Mater. 7 (2008) 816–823.  doi: 10.1038/nmat2269

    14. [14]

      J.M. Curran, R. Chen, J.A. Hunt, Biomaterials 27 (2006) 4783–4793.

    15. [15]

      C.J. Flaim, S. Chien, S.N. Bhatia, Nat. Methods 2 (2005) 119–125.  doi: 10.1038/nmeth736

    16. [16]

      Y. Mei, K. Saha, S.R. Bogatyrev, et al., Nat. Mater. 9 (2010) 768–778.  doi: 10.1038/nmat2812

    17. [17]

      M.J. Dalby, N. Gadegaard, R.O. Oreffo, Nat. Mater. 13 (2014) 558–569.  doi: 10.1038/nmat3980

    18. [18]

      K. Kulangara, Y. Yang, J. Yang, K.W. Leong, Biomaterials 33 (2012) 4998–5003.

    19. [19]

      D.E. Discher, P. Janmey, Y.L. Wang, Science 310 (2005) 1139–1143.  doi: 10.1126/science.1116995

    20. [20]

      A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (2006) 677–689.

    21. [21]

      D. Lam, H.A. Enright, J. Cadena, et al., Sci. Rep. 9 (2019) 4159.

    22. [22]

      S. Aota, M. Nomizu, K.M. Yamada, J. Biol. Chem. 269 (1994) 24756–24761.

    23. [23]

      L. Li, Y. Zhang, J. Mu, et al., Nano Lett. 20 (2020) 4298–4305.  doi: 10.1021/acs.nanolett.0c00929

    24. [24]

      M.P. Sousa, E. Arab-Tehrany, F. Cleymand, J.F. Mano, Small 15 (2019) 1901228.

    25. [25]

      M.C. Kim, Y.R. Silberberg, R. Abeyaratne, R.D. Kamm, H.H. Asada, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E390–E399.

    26. [26]

      V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 7 (2006) 265–275.  doi: 10.1038/nrm1890

    27. [27]

      J.Z. Kechagia, J. Ivaska, P. Roca-Cusachs, Nat. Rev. Mol. Cell Biol. 20 (2019) 457–473.  doi: 10.1038/s41580-019-0134-2

    28. [28]

      J.D. Humphrey, E.R. Dufresne, M.A. Schwartz, Nat. Rev. Mol. Cell Biol. 15 (2014) 802–812.  doi: 10.1038/nrm3896

    29. [29]

      P.A. Janmey, D.A. Fletcher, C.A. Reinhart-King, Physiol. Rev. 100 (2020) 695–724.  doi: 10.1152/physrev.00013.2019

    30. [30]

      O. Chaudhuri, J. Cooper-White, P.A. Janmey, D.J. Mooney, V.B. Shenoy, Nature 584 (2020) 535–546.  doi: 10.1038/s41586-020-2612-2

    31. [31]

      R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Biomaterials 20 (1999) 573–588.

    32. [32]

      H.J. Kong, D.J. Mooney, Nat. Rev. Drug Discov. 6 (2007) 455–463.  doi: 10.1038/nrd2309

    33. [33]

      R. Olivares-Navarrete, S.L. Hyzy, D.A. Haithcock, et al., Bone 73 (2015) 208–216.

    34. [34]

      C. Brandenberger, C. Muhlfeld, Z. Ali, et al., Small 6 (2010) 1669–1678.  doi: 10.1002/smll.201000528

    35. [35]

      H. Hillaireau, P. Couvreur, Cell Mol. Life Sci. 66 (2009) 2873–2896.  doi: 10.1007/s00018-009-0053-z

    36. [36]

      C. Yi, D. Liu, C.C. Fong, J. Zhang, M. Yang, ACS Nano 4 (2010) 6439–6448.  doi: 10.1021/nn101373r

    37. [37]

      B.A. Allo, D.O. Costa, S.J. Dixon, K. Mequanint, A.S. Rizkalla, J. Funct. Biomater. 3 (2012) 432–463.  doi: 10.3390/jfb3020432

    38. [38]

      S. Zankovych, M. Diefenbeck, J. Bossert, et al., Acta. Biomater. 9 (2013) 4926–4934.

    39. [39]

      L. Zhang, T.J. Webster, Nano Today 4 (2009) 66–80.

    40. [40]

      K.D. Jandt, Evol. Adv. Eng. Mater. 9 (2007) 1035–1050.  doi: 10.1002/adem.200700284

    41. [41]

      N. Wang, H. Li, W. Lü, et al., Biomaterials 32 (2011) 6900–6911.

    42. [42]

      S. Oh, K.S. Brammer, Y.S. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 2130–2135.  doi: 10.1073/pnas.0813200106

    43. [43]

      L. Liu, K.I. Kamei, M. Yoshioka, et al., Biomaterials 124 (2017) 47–54.

    44. [44]

      J. Chen, D. Huang, L. Wang, et al., J. Colloid Interface Sci. 574 (2020) 162–173.

    45. [45]

      C. Cornelison, S. Fadel, Int. J. Mol. Sci. 23 (2022) 8496.  doi: 10.3390/ijms23158496

    46. [46]

      Y.S. Chen, H.J. Harn, T.W. Chiou, Cell Transplant. 27 (2018) 407–422.  doi: 10.1177/0963689717732991

    47. [47]

      S. Dauth, T. Grevesse, H. Pantazopoulos, et al., J. Comp. Neurol. 524 (2016) 1309–1336.  doi: 10.1002/cne.23965

    48. [48]

      S. Yang, S. Gigout, A. Molinaro, et al., Mol. Psychiatr. 26 (2021) 5658–5668.  doi: 10.1038/s41380-021-01208-9

    49. [49]

      V.J. Tom, C.M. Doller, A.T. Malouf, J. Silver, J. Neurosci. 24 (2004) 9282–9290.

    50. [50]

      C.Y. Lin, Y.S. Lee, V.W. Lin, J. Silver, J. Neurotraum. 29 (2012) 589–599.  doi: 10.1089/neu.2011.2059

    51. [51]

      L.N. Novikova, L.N. Novikov, J.O. Kellerth, Curr. Opin. Neurol. 16 (2003) 711–715.

    52. [52]

      A.D. Gaudet, P.G. Popovich, Exp. Neurol. 258 (2014) 24–34.

    53. [53]

      T. Bedir, S. Ulag, C.B. Ustundag, O. Gunduz, Mater. Sci. Eng. C Mater. Biol. Appl. 110 (2020) 110741.

    54. [54]

      H.M. Khan, X. Liao, B.A. Sheikh, et al., J. Mater. Chem. B 10 (2022) 6859–6895.  doi: 10.1039/d2tb01106a

    55. [55]

      E. Abelseth, L. Abelseth, L. De la Vega, et al., ACS Biomater. Sci. Eng. 5 (2019) 234–243.  doi: 10.1021/acsbiomaterials.8b01235

    56. [56]

      M. Li, Y. Wang, J. Zhang, et al., J. Biomater. Sci. Polym. Ed. 29 (2018) 2168–2186.  doi: 10.1080/09205063.2018.1528520

    57. [57]

      H. Amani, H. Kazerooni, H. Hassanpoor, A. Akbarzadeh, H. Pazoki-Toroudi, Artif. Cells Nanomed. Biotechnol. 47 (2019) 3524–3539.  doi: 10.1080/21691401.2019.1639723

    58. [58]

      E. Moeendarbary, I.P. Weber, G.K. Sheridan, et al., Nat. Commun. 8 (2017) 14787.

    59. [59]

      A. Tuladhar, S.L. Payne, M.S. Shoichet, Front. Mater. 5 (2018) 14.

    60. [60]

      S. Mitragotri, J. Lahann, Nat. Mater. 8 (2009) 15–23.  doi: 10.1038/nmat2344

    61. [61]

      S. Guo, Y. Liang, L. Liu, et al., J. Nanobiotechnol. 19 (2021) 32.

    62. [62]

      F.S. Mohammed, S.B. Omay, K.N. Sheth, J. Zhou, Expert. Opin. Drug Deliv. 20 (2023) 55–73.  doi: 10.1080/17425247.2023.2152001

    63. [63]

      J.H. Beer, K.T. Springer, B.S. Coller, Blood 79 (1992) 117–128.

    64. [64]

      W.B. Hubbard, M. Lashof-Sullivan, S. Greenberg, et al., Sci. Rep. 8 (2018) 10622.

    65. [65]

      D. Sun, K. Liu, Y. Li, et al., Adv. Healthc. Mater. 11 (2022) e2200517.

    66. [66]

      L. Qi, H. Jiang, X. Cui, et al., Oncotarget 8 (2017) 99666–99680.  doi: 10.18632/oncotarget.20649

    67. [67]

      G. Sun, S. Yang, H. Cai, et al., J. Colloid Interface Sci. 549 (2019) 50–62.

    68. [68]

      C. Zhang, J. Chen, C. Feng, et al., Int. J. Pharm. 461 (2014) 192–202.  doi: 10.1007/978-3-662-45498-5_22

    69. [69]

      R. Yang, Y. Zheng, Q. Wang, L. Zhao, Nanoscale Res. Lett. 13 (2018) 330.

    70. [70]

      W. Poewe, K. Seppi, C.M. Tanner, et al., Nat. Rev. Dis. Primers 3 (2017) 17013.

    71. [71]

      Q. Zheng, H. Liu, H. Zhang, et al., Adv. Sci. 10 (2023) 2300758.

    72. [72]

      X. Ying, Y. Wang, J. Liang, et al., Angew. Chem. Int. Ed. 53 (2014) 12436–12440.  doi: 10.1002/anie.201403846

    73. [73]

      X. Dong, J. Gao, C.Y. Zhang, et al., ACS Nano 13 (2019) 1272–1283.

    74. [74]

      J. Ma, S. Zhang, J. Liu, et al., Small 15 (2019) e1902011.

    75. [75]

      Y. Liu, J. Luo, Y. Liu, et al., ACS Cent. Sci. 8 (2022) 1336–1349.

    76. [76]

      C.D.F. Lopes, N.P. Goncalves, C.P. Gomes, M.J. Saraiva, A.P. Pego, Biomaterials 121 (2017) 83–96.

    77. [77]

      W. Zakrzewski, M. Dobrzyński, M. Szymonowicz, Z. Rybak, Stem Cell Res. Ther. 10 (2019) 68.

    78. [78]

      P.X. Wan, World J. Stem Cells 7 (2015) 448–460.  doi: 10.4252/wjsc.v7.i2.448

    79. [79]

      L. Li, X. Chen, W.E. Wang, C. Zeng, Stem Cells Int. 2016 (2016) 9682757.

    80. [80]

      L.C. Turtzo, M.D. Budde, D.D. Dean, et al., PLoS One 10 (2015) e0126551.  doi: 10.1371/journal.pone.0126551

    81. [81]

      L.N. Zamproni, M.A.V.M. Grinet, M.T.V.V. Mundim, et al., Nanomed. Nanotechnol. 15 (2019) 98–107.

    82. [82]

      M. Alvarado-Velez, S.F. Enam, N. Mehta, et al., Biomaterials 266 (2021) 120419.

    83. [83]

      K.A. Mosiewicz, L. Kolb, A.J. van der Vlies, et al., Nat. Mater. 12 (2013) 1072–1078.  doi: 10.1038/nmat3766

    84. [84]

      K.L. Wilson, S.C.L. Pérez, M.M. Naffaa, S.H. Kelly, T. Segura, Adv. Mater. 34 (2022) e2201921.

    85. [85]

      B. Zhou, K. Xu, X. Zheng, et al., Signal Transduct. Target. Ther. 5 (2020) 144.

    86. [86]

      D.G. Phinney, M.F. Pittenger, Stem Cells 35 (2017) 851–858.  doi: 10.1002/stem.2575

    87. [87]

      J. Kowal, G. Arras, M. Colombo, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E968–E977.

    88. [88]

      Y. Zhang, M. Chopp, Z.G. Zhang, et al., Neurochem. Int. 111 (2017) 69–81.

    89. [89]

      L. Yang, Y. Zhai, Y. Hao, Z. Zhu, G. Cheng, Small 16 (2020) e1906273.

    90. [90]

      K. Nejati, D. Mehdi, S. Ghareghomi, et al., J. Drug Delivery Sci. Technol. 60 (2020) 102095.

    91. [91]

      M. Tsintou, K. Dalamagkas, T.L. Moore, et al., Neural Regen. Res. 16 (2021) 605–613.

    92. [92]

      M. Lacalle-Aurioles, C. Cassel de Camps, C.E. Zorca, L.K. Beitel, T.M. Durcan, Front. Cell. Neurosci. 14 (2020) 594304.

    93. [93]

      F.L. Maclean, M.K. Horne, R.J. Williams, D.R. Nisbet, APL Bioeng. 2 (2018) 021502.

    94. [94]

      Y. Li, M. Wang, M. Sun, et al., Compos. Part B: Eng. 242 (2022) 110034.

    95. [95]

      X. Liu, J. Wang, P. Wang, et al., Front. Bioeng. Biotechnol. 10 (2022) 1025138.

    96. [96]

      H. Nomura, C.H. Tator, M.S. Shoichet, J. Neurotraum. 23 (2006) 496–507.  doi: 10.1089/neu.2006.23.496

    97. [97]

      J.P. Jiang, X.Y. Liu, F. Zhao, et al., Neural Regen. Res. 15 (2020) 959–968.

    98. [98]

      Y. Sun, C. Yang, X. Zhu, et al., J. Biomed. Mater. Res. A 107 (2019) 1898–1908.  doi: 10.1002/jbm.a.36675

    99. [99]

      R.E. Thompson, J. Pardieck, L. Smith, et al., Biomaterials 162 (2018) 208–223.

    100. [100]

      L. Yan, M.-S. Guo, Y. Zhang, et al., Oxid. Med. Cell. Longev. 2022 (2022) 5288698.

    101. [101]

      H. Kanno, K. Handa, T. Murakami, T. Aizawa, H. Ozawa, Cells 11 (2022) 1205.  doi: 10.3390/cells11071205

    102. [102]

      J. Wang, X. Li, Y. Song, et al., Bioact. Mater. 6 (2021) 1988–1999.

    103. [103]

      H. Ghuman, A.R. Massensini, J. Donnelly, et al., Biomaterials 91 (2016) 166–181.

    104. [104]

      Y. Wang, M.J. Cooke, C.M. Morshead, M.S. Shoichet, Biomaterials 33 (2012) 2681–2692.

    105. [105]

      Z. Liu, H. Tong, J. Li, et al., Front. Bioeng. Biotechnol. 10 (2022) 922570.

    106. [106]

      X. Chen, X. Ge, Y. Qian, et al., Adv. Funct. Mater. 30 (2020) 2004537.

    107. [107]

      S. Vijayavenkataraman, S. Thaharah, S. Zhang, W.F. Lu, J.Y.H. Fuh, Mater. Design 162 (2019) 171–184.

    108. [108]

      X. Liu, C. Wu, Y. Zhang, et al., Carbohyd. Polym. 306 (2023) 120578.

    109. [109]

      T. Marinov, H.A. Lopez Sanchez, L. Yuchi, et al., In Silico Biol. 14 (2020) 85–99.  doi: 10.3233/isb-180172

    110. [110]

      L.A. Struzyna, J.A. Wolf, C.J. Mietus, et al., Tissue Eng. Part A 21 (2015) 2744–2756.  doi: 10.1089/ten.tea.2014.0557

    111. [111]

      B.Q. Lai, M.T. Che, B.L. Du, et al., Biomaterials 109 (2016) 40–54.

    112. [112]

      P.Z. Sullivan, A. AlBayar, J.C. Burrell, et al., Tissue Eng. Part A 27 (2021) 1264–1274.  doi: 10.1089/ten.tea.2020.0233

    113. [113]

      E. Di Lullo, A.R. Kriegstein, Nat. Rev. Neurosci. 18 (2017) 573–584.  doi: 10.1038/nrn.2017.107

    114. [114]

      P. Hoang, Z. Ma, Acta Biomater. 132 (2021) 23–36.

    115. [115]

      M.A. Lancaster, N.S. Corsini, S. Wolfinger, et al., Nat. Biotechnol. 35 (2017) 659–666.  doi: 10.1038/nbt.3906

    116. [116]

      J. Jo, Y. Xiao, A.X. Sun, et al., Cell Stem Cell 19 (2016) 248–257.

    117. [117]

      X. Qian, H.N. Nguyen, M.M. Song, et al., Cell 165 (2016) 1238–1254.

    118. [118]

      M. Restan Perez, R. Sharma, N.Z. Masri, S.M. Willerth, Biomolecules 11 (2021) 1250.  doi: 10.3390/biom11081250

    119. [119]

      R. Lozano, L. Stevens, B.C. Thompson, et al., Biomaterials 67 (2015) 264–273.

    120. [120]

      Y.E. Li, Y.A. Jodat, R. Samanipour, et al., Biofabrication 13 (2021) 015014.  doi: 10.1088/1758-5090/abc1be

    121. [121]

      D. Joung, V. Truong, C.C. Neitzke, et al., Adv. Funct. Mater. 28 (2018) 1801850.

    122. [122]

      R. Sharma, I.P.M. Smits, L. De La Vega, C. Lee, S.M. Willerth, Front. Bioeng. Biotechnol. 8 (2020) 57.

    123. [123]

      Q. Gu, E. Tomaskovic-Crook, R. Lozano, et al., Adv. Healthc. Mater. 5 (2016) 1429–1438.  doi: 10.1002/adhm.201600095

    124. [124]

      M. Bodaghi, A.R. Damanpack, W.H. Liao, Smart Mater. Struct. 25 (2016) 105034.  doi: 10.1088/0964-1726/25/10/105034

    125. [125]

      B. Liu, B. Dong, C. Xin, et al., Small 19 (2023) e2204630.

    126. [126]

      K. Osouli-Bostanabad, T. Masalehdan, R.M.I. Kapsa, et al., ACS Biomater. Sci. Eng. 8 (2022) 2764–2797.  doi: 10.1021/acsbiomaterials.2c00094

  • 加载中
    1. [1]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    2. [2]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    3. [3]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    4. [4]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    5. [5]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    6. [6]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    7. [7]

      Huijuan ZhangChenglin LiangXinyi DingMeng ZhangSiyu LuLin Hou . Manganese-based nano-delivery system for sensitized anti-tumor immunotherapy via combined autophagy inhibition. Chinese Chemical Letters, 2025, 36(7): 110525-. doi: 10.1016/j.cclet.2024.110525

    8. [8]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    9. [9]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    10. [10]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    11. [11]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    12. [12]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    13. [13]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    14. [14]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    15. [15]

      Guoyin ChenSiming XuZeqi ZhangYing GuoJiahao ZhengJialei YangJie PanKai HouMeifang Zhu . Modulus self-adaptive hydrogel optical fiber for long-term modulation of neural activity. Chinese Chemical Letters, 2025, 36(7): 110440-. doi: 10.1016/j.cclet.2024.110440

    16. [16]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    17. [17]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    18. [18]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    19. [19]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    20. [20]

      Dan OuyangHuan HuangYanting HeJiajing ChenJiali LinZhuling ChenZongwei CaiZian Lin . Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides. Chinese Chemical Letters, 2024, 35(5): 108885-. doi: 10.1016/j.cclet.2023.108885

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return