Progress in Na2FePO4F cathodes for energy storage: Fabrication, modification and application
-
* Corresponding authors.
E-mail addresses: hujunxian@kust.edu.cn (J. Hu), yaochun9796@163.com (Y. Yao).
Citation:
Yanqiu Xu, Xuanli Chen, Yin Li, Keyu Zhang, Shaoze Zhang, Junxian Hu, Yaochun Yao. Progress in Na2FePO4F cathodes for energy storage: Fabrication, modification and application[J]. Chinese Chemical Letters,
;2025, 36(12): 110574.
doi:
10.1016/j.cclet.2024.110574
M. Höök, X. Tang, Energy Policy 52 (2013) 797–809.
X. Deng, J. Li, L. Ma, et al., Mater. Chem. Front. 3 (2019) 2221–2245.
doi: 10.1039/c9qm00425d
A. Noori, M.F. El-Kady, M.S. Rahmanifar, et al., Chem. Soc. Rev. 48 (2019) 1272–1341.
doi: 10.1039/c8cs00581h
Y. Jiang, Z. Zhang, H. Liao, et al., ACS Nano 18 (2024) 7796–7824.
doi: 10.1021/acsnano.4c00613
S.T. Myung, Y.-K. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.
B. Scrosati, J. Garche, J. Power Sources 195 (2010) 2419–2430.
Y. Li, Y. Lu, C. Zhao, et al., Energy Storage Mater. 7 (2017) 130–151.
H. PAN, Y.-S. HU, H. LI, et al., Sci. Sin. Chim. 44 (2014) 1269–1279.
Q. Wang, S. Chu, S. Guo, Chin. Chem. Lett. 31 (2020) 2167–2176.
Q. Liu, Z. Hu, M. Chen, et al., Adv. Funct. Mater. 30 (2020) 1909530.
H. Gao, J. Zeng, Z. Sun, et al., Mater. Today Energy 42 (2024) 101551.
Q. Ni, Y. Bai, F. Wu, et al., Adv. Sci. 4 (2017) 1600275.
P. Barpanda, L. Lander, S.I. Nishimura, et al., Adv. Energy Mater. 8 (2018) 1703055.
J. Ning, J. Hu, M. Zhou, et al., Chem. Eng. J. 489 (2024) 151531.
J. Peng, Y. Liao, Y. Zhang, et al., ACS Appl. Nano Mater. (2023) 10.1021/acsanm.3c03981.
doi: 10.1021/acsanm.3c03981
D. Yuan, X. Liang, L. Wu, et al., Adv. Mater. 26 (2014) 6301–6306.
doi: 10.1002/adma.201401946
L.N. Zhao, T. Zhang, H.L. Zhao, et al., Mater. Today Nano 10 (2020) 100072.
N.V. Kosova, V.R. Podugolnikov, E.T. Devyatkina, et al., Mater. Res. Bull. 60 (2014) 849–857.
P. Moreau, D. Guyomard, J. Gaubicher, et al., Chem. Mater. 22 (2010) 4126–4128.
doi: 10.1021/cm101377h
H. Liao, Z. Zhang, Y. Zheng, et al., Energy Storage Mater. 65 (2024) 103157.
S.M. Oh, S.T. Myung, J. Hassoun, et al., Electrochem. Commun. 22 (2012) 149–152.
A. Maxim, D.L. Chris, T.Thiam Teck, et al., Inorg. Chem. 53 (2013) 682–684.
B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, et al., Nat. Mater. 6 (2007) 749–753.
doi: 10.1038/nmat2007
Z. El Kacemi, L. Fkhar, K. El Maalam, et al., J. Mol. Struct. 1312 (2024) 138524.
Z. El Kacemi, Z. Mansouri, A. Benyoussef, et al., Comput. Mater. Sci. 206 (2022) 111292.
V.T. Ivan, A.A. Dmitry, A.D. Oleg, et al., J. Am. Chem. Soc. 140 (2018) 3994–4003.
L. Zhu, H. Wang, D. Sun, et al., J. Mater. Chem. A 8 (2020) 21387–21407.
doi: 10.1039/d0ta07872g
J. Di, Q. Hailong, D. Fei, et al., Solid State Sci. 93 (2019) 62–69.
doi: 10.1109/mwc.2019.1800301
S. Weixin, J. Xiaobo, W. Zhengping, et al., J. Mater. Chem. A 2 (2014) 2571–2577.
L. Qi, L. Zigeng, Z. Feng, et al., Angew. Chem. Int. Ed. 57 (2018) 11918–11923.
Z.R. Deng, L.L. Zhang, F. Pei, et al., Small 20 (2024) 2400149.
R. Tripathi, S.M. Wood, M.S. Islam, et al., Energy Environ. Sci. 6 (2013) 2257–2264.
doi: 10.1039/c3ee40914g
M. Avdeev, Z. Mohamed, C.D. Ling, et al., Inorg. Chem. 52 (2013) 8685–8693.
doi: 10.1021/ic400870x
S. Chikashi, M. Yusuke, N. Shin-ichi, et al., J. Comput. Chem. 40 (2018) 239–248.
Y. Gong, X. Gao, L. Sheng, et al., Electrochim. Acta 439 (2023) 141670.
B. Magali, K. Natacha, P.H. Raphaël, et al., Mater. Lett. 130 (2014) 263–266.
L. Haiming, W. Tailin, W. Xue, et al., Chem. Eur. J. 27 (2021) 9022–9030.
Z. Liu, L. Li, J. Chen, et al., J. Alloys Compd. 855 (2021) 157485.
S. Hua, S. Cai, R. Ling, et al., Inorg. Chem. Commun. 95 (2018) 90–94.
J. Xun, Y. Zhang, B. Zhang, et al., ACS Appl. Energy Mater. 3 (2020) 6232–6239.
doi: 10.1021/acsaem.0c00323
S. Lalit, B. Ankush, A. Loïc, et al., Ionics 24 (2017) 2187–2192.
W. Fanfan, Z. Ning, Z. Xudong, et al., Adv. Sci. 6 (2019) 1900649.
B. Magali, C. Sébastien, T.S. Moulay, et al., Sol. Energy Mater. Sol. Cells 148 (2016) 67–72.
L. Zhaozhao, C. Hongxia, L. Xilin, et al., J. Mater. Sci. Mater. Electron. 33 (2022) 6898–6910.
S. Tang, X. Zhang, Y. Sui, et al., Front. Chem. 8 (2020) 633949.
L. Huangxu, W. Taosheng, W. Sha, et al., ACS Sustain. Chem. Eng. 9 (2021) 11798–11806.
Y. Guo, X. Wang, Y. Shen, et al., J. Mater. Sci. 57 (2022) 58–104.
H. Huang, Y. Xia, Y. Hao, et al., Adv. Funct. Mater. 33 (2023) 2305109.
R. Ling, S. Cai, D. Xie, et al., J. Mater. Sci. 53 (2017) 2735–2747.
H. Hu, Y. Bai, C. Miao, et al., J. Electroanal. Chem. 867 (2020) 114187.
K. Yoshiteru, Y. Naoaki, K. Masataka, et al., Electrochem. Commun. 13 (2011) 1225–1228.
D. Xiang, S. Wenxiang, S. Jaka, et al., ACS Appl. Mater. Interfaces 9 (2017) 16280–16287.
Y. Cao, X.L. Li, X. Dong, et al., Small 18 (2022) 2204830.
Y. Jianhua, L. Xingbo, L. Bingyun, Electrochem. Commun. 56 (2015) 46–50.
L. Markas, R. Vishwanathan, B. Palani, RSC Adv. 5 (2015) 50155–50164.
T.-U. Atsushi, T. Hirotaka, H. Takuya, et al., J. Ceram. Soc. Jpn. 126 (2018) 336–340.
Z. El Kacemi, L. Fkhar, K. El Maalam, et al., Solid State Ionics 392 (2023) 116167.
S.K. Jesse, V.T.D.N. Vicky, K. Hyung-Seok, et al., J. Mater. Chem. A 5 (2017) 18707–18715.
D. Jiemin, X. Jingchao, Y. Yifan, et al., Energy Storage Mater. 45 (2021) 851–860.
L. He, X. Ge, X. Wang, et al., Energy Storage Mater. 61 (2023) 102905.
L. Wang, H. Tian, X. Yao, et al., Micromachines 15 (2023) 15.
F. Guo, S. Wang, G. Liu, et al., Electrochemistry 90 (2022) 117003.
doi: 10.5796/electrochemistry.22-00103
L. Quan, M. Liu, Z. Wang, et al., Chem. Eng. Sci. 299 (2024) 120522.
Y. Liu, S. Li, Z.Y. Gu, et al., Energy Storage Mater. 68 (2024) 103319.
K. Yoshiteru, Y. Naoaki, K. Masataka, et al., Electrochemistry 80 (2012) 80–84.
Y. Xie, H. Wang, R. Liu, et al., J. Electrochem. Soc. 164 (2017) A3487–A3492.
doi: 10.1149/2.0281714jes
R. Ling, S. Cai, S. Shen, et al., J. Alloys Compd. 704 (2017) 631–640.
L. Alex, X. Yunhua, L. Yihang, et al., J. Power Sources 223 (2012) 62–67.
J. Zhang, X. Zhou, Y. Wang, et al., Small 15 (2019) e1903723.
Y. Lei, J. Zhang, X. Chen, et al., Mater. Today Energy 26 (2022) 100997.
A.K. Maria, S.A. Alexey, A.A. Dmitry, et al., Inorg. Chem. 59 (2020) 16225–16237.
S. Lalit, N. Prasant Kumar, L. Ezequiel de la, et al., ACS Appl. Mater. Interfaces 9 (2017) 34961–34969.
J. Bodart, N. Eshraghi, M.T. Sougrati, et al., J. Power Sources 555 (2023) 232410.
L. Haiming, W. Tailin, W. Xue, et al., Electrochim. Acta 373 (2021) 137905.
K. Wonseok, Y. Jung-Keun, P. Hyunyoung, et al., J. Power Sources 432 (2019) 1–7.
M. Inagaki, Carbon 50 (2012) 3247–3266.
A. Al-Kawaz, A. Rubin, N. Badi, et al., Mater. Chem. Phys. 175 (2016) 206–214.
A. Tyagi, R.S. Walia, Q. Murtaza, et al., Int. J. Refract. Met. Hard. Mater. 78 (2019) 107–122.
M. Abdelfattah, C. Sebastien, B. Magali, et al., J. Solid State Electrochem. 22 (2017) 103–112.
Q. Jiang, Y. Cai, X. Sang, et al., Energy Fuels 38 (2024) 10542–10559.
doi: 10.1021/acs.energyfuels.4c00918
Y. Chen, X. Li, K. Park, et al., Chemistry 3 (2017) 152–163.
L. He, H. Li, X. Ge, et al., Adv. Mater. Interfaces 9 (2022) 2200515.
J. Zhang, S. Ma, J. Zhang, et al., Nano Energy 128 (2024) 109814.
X. Han, Z. Liu, X. Hu, et al., Adv. Energy Sustain. Res. 5 (2023) 2300166.
Z.X. Huang, X.L. Zhang, X.X. Zhao, et al., Inorg. Chem. Front. 10 (2023) 37–48.
doi: 10.1039/d2qi02237k
J. Luo, Y. Zhang, E. Matios, et al., Nano Lett. 22 (2022) 1382–1390.
doi: 10.1021/acs.nanolett.1c04835
X. Wu, J. Zheng, Z. Gong, et al., J. Mater. Chem. 21 (2011) 18630–18637.
doi: 10.1039/c1jm13578c
C. Dongming, C. Shasha, H. Chang, et al., J. Power Sources 301 (2015) 87–92.
S. Lalit, N. Kosuke, S. Ryo, et al., ChemElectroChem 5 (2018) 1–7.
L.L. Albert, K. Soojeong, P. Baofei, et al., J. Power Sources 369 (2017) 133–137.
L.E. Brian, W.R.M. Makahnouk, W.N. Rowan-Weetaluktuk, et al., Chem. Mater. 22 (2009) 1059–1070.
H. Hu, Y. Wang, Y. Huang, et al., J. Cent. South Univ. 26 (2019) 1521–1529.
doi: 10.1007/s11771-019-4108-5
L. Mingjun, G. Rongting, L. Wei, et al., J. Electroanal. Chem. 922 (2022) 116772.
A. Huiting, L. Wei, L. Zheng, et al., J. Alloys Compd. 854 (2021) 157156.
Y. Niu, Y. Zhang, M. Xu, J. Mater. Chem. A 7 (2019) 15006–15025.
doi: 10.1039/c9ta04274a
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Qiong Su , Chao Hu , Sichan Li , Wenjun Huang , Jianyu Dong , Ren Song , Lan Xu , Guozhao Fang . Sodium-ion batteries at low temperature: Storage mechanism and modification strategies. Chinese Chemical Letters, 2025, 36(12): 111267-. doi: 10.1016/j.cclet.2025.111267
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Fanjun Kong , Jing Zhang , Yuting Tang , Chencheng Sun , Chunfu Lin , Tao Zhang , Wangsheng Chu , Li Song , Liang Zhang , Shi Tao . Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110993-. doi: 10.1016/j.cclet.2025.110993
Wenya Li , Yuanqi Yang , Yuqing Yang , Min Liang , Huizi Li , Xi Ke , Liying Liu , Yan Sun , Chunsheng Li , Zhicong Shi , Su Ma . Insights into magnesium and titanium co-doping to stabilize the O3-type NaCrO2 cathode material for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110388-. doi: 10.1016/j.cclet.2024.110388
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Zheng Li , Fangkun Li , Xijun Xu , Jun Zeng , Hangyu Zhang , Lei Xi , Yiwen Wu , Linwei Zhao , Jiahe Chen , Jun Liu , Yanping Huo , Shaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
Weinan Hu , Li Li , Xinyu Wang , Yongqiang Zhang , Maoping Song , Linlin Shi , Xinqi Hao , Siyu Lu . Carbonized polymer dots: Illuminating synthesis pathways, optical frontiers, and photoelectronic breakthroughs. Chinese Chemical Letters, 2025, 36(11): 111612-. doi: 10.1016/j.cclet.2025.111612
Yao Wang , Jun Ouyang , Huadong Yuan , Jianmin Luo , Shihui Zou , Jianwei Nai , Xinyong Tao , Yujing Liu . Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110412-. doi: 10.1016/j.cclet.2024.110412
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Liangju Zhao , Shiyu Qin , Fei Wu , Limin Zhu , Qing Han , Lingling Xie , Xuejing Qiu , Hongliang Wei , Lanhua Yi , Xiaoyu Cao . Polycarbonyl conjugated porous polyimide as anode materials for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110246-. doi: 10.1016/j.cclet.2024.110246
Hong Yin , Danyang Han , Wei Wang , Zhaohui Hou , Miao Zhou , Ye Han , İhsan Çaha , João Cunha , Maryam Karimi , Zhixin Tai , Xinxin Cao . Bimetallic sulfide anodes based on heterojunction structures for high-performance sodium-ion battery anodes. Chinese Chemical Letters, 2025, 36(12): 110537-. doi: 10.1016/j.cclet.2024.110537
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Yining Li , Shimei Wu , Lantao Chen , Haosen Fan , Yufei Zhang , Lingxing Zeng . Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(9): 110371-. doi: 10.1016/j.cclet.2024.110371