Citation: Huili Zhao, Xiao Tan, Huining Chai, Lin Hu, Hongbo Li, Lijun Qu, Xueji Zhang, Guangyao Zhang. Recent advances in conductive MOF-based electrochemical sensors[J]. Chinese Chemical Letters, ;2025, 36(8): 110571. doi: 10.1016/j.cclet.2024.110571 shu

Recent advances in conductive MOF-based electrochemical sensors

    * Corresponding authors.
    E-mail addresses: hul@yctu.edu.cn (L. Hu), gyzhang@qdu.edu.cn (G. Zhang).
  • Received Date: 4 July 2024
    Revised Date: 20 October 2024
    Accepted Date: 22 October 2024
    Available Online: 23 October 2024

Figures(15)

  • Electrochemical sensors, with their outstanding sensitivity, excellent selectivity, ease of operation, and lower manufacturing costs, have found widespread applications in fields such as disease diagnosis, environmental monitoring, and food safety. In the development of sensing materials, metal-organic frameworks (MOFs) have become a research hotspot due to their high specific surface area, tunable pore structures, and high designability. Recently, conductive metal-organic frameworks (CMOFs) have brought innovative opportunities to the field of electrochemical sensing, attributing to their remarkable capabilities in catalysis, electron transport, and signal amplification. This review summarizes the significant progress of CMOFs in the field of electrochemical sensing. Firstly, the design and synthesis strategies for CMOFs used in electrochemical sensing are explored, including enhancing the electrochemical properties of MOFs through precise design of different metal nodes and ligands or via post-synthetic modification techniques, covering Cu-based CMOFs, Ni-based CMOFs, Fe-based CMOFs, and CMOF composites. Furthermore, this article elaborately discusses the breakthrough achievements of electrochemical sensors based on CMOFs in applications such as the determination of inorganic ions, detection of organic pollutants, and recognition of gases and biomolecules, and introduces the principles of electrochemical sensing methods and the role of CMOFs in enhancing the performance of electrochemical sensors. Finally, this review analyzes the main challenges currently faced by CMOFs in the field of electrochemical sensors and offers perspectives on their future development. These challenges mainly include stability, selectivity, production costs, and the realization of their large-scale application. CMOFs provide new ideas and material platforms for the development of electrochemical sensors. As researchers deepen their understanding of their properties and technological advances continue, the application prospects of CMOF-based electrochemical sensors will be even broader.
  • 加载中
    1. [1]

      R. Umapathi, S.M. Ghoreishian, S. Sonwal, G.M. Rani, Y.S. Huh, Coord. Chem. Rev. 453 (2022) 214305.

    2. [2]

      J. Dai, O. Ogbeide, N. Macadam, et al., Chem. Soc. Rev. 49 (2020) 1756–1789.  doi: 10.1039/c9cs00459a

    3. [3]

      S. Li, H. Zhang, M. Zhu, et al., Chem. Rev. 123 (2023) 7953–8039.  doi: 10.1021/acs.chemrev.1c00759

    4. [4]

      Y.X. Li, H.Y. Qin, C. Hu, et al., J. Anal. Test. 6 (2022) 431–440.  doi: 10.1007/s41664-022-00235-x

    5. [5]

      G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron. 103 (2018) 113–129.

    6. [6]

      N. Kajal, V. Singh, R. Gupta, S. Gautam, Environ. Res. 204 (2022) 112320.

    7. [7]

      P. Zhang, B. Zhu, P. Du, J. Travas-Sejdic, Chem. Rev. 124 (2023) 722–767.

    8. [8]

      S. Liu, C. Lai, X. Liu, et al., Coord. Chem. Rev. 424 (2020) 213520.

    9. [9]

      K. Singh, K.K. Maurya, M. Malviya, J. Anal. Test. 6 (2022) 431–440.  doi: 10.1007/978-3-031-08999-2_37

    10. [10]

      Z.J. Wang, Q. Li, L.L. Tan, C.G. Liu, L. Shang, J. Anal. Test. 6 (2022) 163–177.  doi: 10.1007/s41664-022-00224-0

    11. [11]

      F. Chen, J. Wang, L. Chen, et al., Anal. Chem. 96 (2024) 3914–3924.  doi: 10.1021/acs.analchem.3c05672

    12. [12]

      L. Huang, Z. Liang, F. Zhang, et al., Anal. Chem. 94 (2022) 16246–16253.  doi: 10.1021/acs.analchem.2c04101

    13. [13]

      Y. Tang, L. Zhong, Y. Zhang, et al., Sci. Bull. 68 (2023) 3181–3191.

    14. [14]

      X. Mu, W. Wang, C. Sun, et al., Adv. Mater. Interfaces 8 (2021) 2002151.

    15. [15]

      L.L. Gao, E.Q. Gao, Coord. Chem. Rev. 434 (2021) 213784.

    16. [16]

      K.K. Liu, Z. Meng, Y. Fang, H.L. Jiang, eScience 3 (2023) 100133.

    17. [17]

      H. Sun, J. Guan, H. Chai, et al., Biosens. Bioelectron. 251 (2024) 116080.

    18. [18]

      K. Yu, M. Li, H. Chai, et al., Chem. Eng. J. 451 (2023) 138321.

    19. [19]

      T. Yan, G. Zhang, K. Yu, et al., Chem. Eng. J. 455 (2023) 140779.

    20. [20]

      C.S. Liu, J. Li, H. Pang, Coord. Chem. Rev. 410 (2020) 213222.

    21. [21]

      A. Boakye, K. Yu, H. Chai, et al., Langmuir 40 (2024) 2708–2718.  doi: 10.1021/acs.langmuir.3c03257

    22. [22]

      R. Sakthivel, L.Y. Lin, Y.F. Duann, et al., ACS Appl. Mater. Interfaces 14 (2022) 28639–28650.  doi: 10.1021/acsami.2c06785

    23. [23]

      F.F. Wang, C. Liu, J. Yang, et al., Chem. Eng. J. 438 (2022) 135639.

    24. [24]

      H. Meng, Y. Han, C. Zhou, et al., Small Methods 4 (2020) 2000396.

    25. [25]

      C. Li, L. Zhang, J. Chen, et al., Nanoscale 13 (2021) 485–509.  doi: 10.1039/d0nr06396g

    26. [26]

      G. Zhang, L. Jin, R. Zhang, et al., Coord. Chem. Rev. 439 (2021) 213915.

    27. [27]

      Z. Gao, C. Wang, J. Li, et al., Acta Phys. Chim. Sin. 37 (2021) 2010025.

    28. [28]

      L.S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 120 (2020) 8536–8580.  doi: 10.1021/acs.chemrev.9b00766

    29. [29]

      Q. Hu, J. Qin, X.F. Wang, et al., Front. Chem. 9 (2021) 786970.

    30. [30]

      K. Niu, P. Sun, J. Chen, X. Lu, Anal. Chem. 94 (2022) 17177–17185.  doi: 10.1021/acs.analchem.2c03766

    31. [31]

      H.T.B. Pham, J.Y. Choi, S. Huang, et al., J. Am. Chem. Soc. 144 (2022) 10615–10621.  doi: 10.1021/jacs.2c03793

    32. [32]

      Y. Luo, Y. Wu, A. Braun, et al., ACS Nano 16 (2022) 20820–20830.  doi: 10.1021/acsnano.2c08097

    33. [33]

      X. Chen, J. Dong, K. Chi, et al., Adv. Funct. Mater. 31 (2021) 2102855.

    34. [34]

      M. Miao, Z. Wang, Z. Guo, J. Xing, Adv. Mater. Interfaces 9 (2022) 2101908.

    35. [35]

      M.S. Yao, X.J. Lv, Z.H. Fu, et al., Angew. Chem. Int. Ed. 56 (2017) 16510–16514.  doi: 10.1002/anie.201709558

    36. [36]

      A.Q. Wu, W.Q. Wang, H.B. Zhan, et al., Nano Res. 14 (2021) 438–443.  doi: 10.1007/s12274-020-2823-8

    37. [37]

      X. Chen, Y. Lu, J. Dong, et al., ACS Appl. Mater. Interfaces 12 (2020) 57235–57244.  doi: 10.1021/acsami.0c18422

    38. [38]

      A.M. Eagleton, M. Ko, R.M. Stolz, et al., J. Am. Chem. Soc. 144 (2022) 23297–23312.  doi: 10.1021/jacs.2c05510

    39. [39]

      Y. Qiao, Q. Liu, S. Lu, et al., J. Mater. Chem. B 8 (2020) 5411–5415.  doi: 10.1039/d0tb00131g

    40. [40]

      L. Wang, L. Pan, X. Han, et al., J. Colloid Interface Sci. 616 (2022) 326–337.

    41. [41]

      T. Ohata, A. Nomoto, T. Watanabe, et al., ACS Appl. Mater. Interfaces 13 (2021) 54570–54578.  doi: 10.1021/acsami.1c16180

    42. [42]

      T. Lee, J.O. Kim, C. Park, et al., Adv. Mater. 34 (2022) 2107696.

    43. [43]

      S. Benmansour, A. Abhervé, P. Gómez-Claramunt, C. Vallés-García, C.J. Gómez– García, ACS Appl. Mater. Interfaces 9 (2017) 26210–26218.  doi: 10.1021/acsami.7b08322

    44. [44]

      C.W. Kung, P.C. Han, CH. Chuang, K.C.W. Wu, APL Mater. 7 (2019) 110902.

    45. [45]

      S. Zhou, T. Liu, M. Strømme, C. Xu, Angew. Chem. Int. Ed. 63 (2024) e202318387.

    46. [46]

      Y.C. Chen, W.H. Chiang, D. Kurniawan, et al., ACS Appl. Mater. Interfaces 11 (2019) 35319–35326.  doi: 10.1021/acsami.9b11447

    47. [47]

      L. Wang, H. Yang, J. He, et al., Electrochim. Acta 213 (2016) 691–697.

    48. [48]

      J. Chen, X. Huang, R. Ye, et al., J. Appl. Electrochem. 52 (2022) 1617–1628.  doi: 10.1007/s10800-022-01735-5

    49. [49]

      S. Dong, H. Niu, L. Sun, et al., J. Electroanal. Chem. 911 (2022) 116219.

    50. [50]

      D. Manoj, S. Rajendran, T.K.A. Hoang, et al., J. Ind. Eng. Chem. 112 (2022) 287–295.

    51. [51]

      S.K. Bhardwaj, G.C. Mohanta, A.L. Sharma, K.H. Kim, A. Deep, Anal. Chim. Acta 1043 (2018) 89–97.

    52. [52]

      M.H. Hassan, R.R. Haikal, T. Hashem, et al., ACS Appl. Mater. Interfaces 11 (2019) 6442–6447.  doi: 10.1021/acsami.8b20951

    53. [53]

      D.L. White, B.A. Day, Z. Zeng, et al., J. Am. Chem. Soc. 143 (2021) 8022–8033.  doi: 10.1021/jacs.1c01673

    54. [54]

      M.Q. Wang, C. Ye, S.J. Bao, et al., Analyst 141 (2016) 1279–1285.

    55. [55]

      W.T. Koo, S.J. Kim, J.S. Jang, D.H. Kim, I.D. Kim, Adv. Sci. 6 (2019) 1900250.

    56. [56]

      C. Park, W.T. Koo, S. Chong, et al., Adv. Mater. 33 (2021) 2101216.

    57. [57]

      M.A. Gordillo, P.A. Benavides, K. Ma, S. Saha, ACS Appl. Nano Mater. 5 (2022) 13912–13920.  doi: 10.1021/acsanm.2c03643

    58. [58]

      W. Huang, Y. Xu, Z. Wang, et al., Talanta 249 (2022) 123612.

    59. [59]

      S. Wang, B. He, Y. Liang, et al., ACS Appl. Mater. Interfaces 13 (2021) 26362–26372.  doi: 10.1021/acsami.1c04257

    60. [60]

      R. Zhu, L. Liu, G. Zhang, et al., Nano Energy 122 (2024) 109333.

    61. [61]

      Y. Wang, Y. Qian, L. Zhang, et al., J. Am. Chem. Soc. 145 (2023) 2118–2126.  doi: 10.1021/jacs.2c07053

    62. [62]

      J. Liu, S. Yang, J. Shen, et al., Microchim. Acta 189 (2022) 391.

    63. [63]

      C. Sun, W. Wang, X. Mu, et al., ACS Appl. Mater. Interfaces 14 (2022) 54266–54275.  doi: 10.1021/acsami.2c17417

    64. [64]

      H. Roh, D.H. Kim, Y. Cho, et al., Adv. Mater. 36 (2024) 2312382.

    65. [65]

      S. Gautam, S. Rialach, S. Paul, N. Goyal, RSC Adv. 14 (2024) 14311–14339.  doi: 10.1039/d4ra01027b

    66. [66]

      C. Li, T. Hang, Y. Jin, Exploration 3 (2023) 20220151.

    67. [67]

      Y. Qi, X. Chen, D. Huo, et al., Anal. Chim. Acta 1220 (2022) 339812.

    68. [68]

      S. Lu, H. Jia, M. Hummel, et al., RSC Adv. 11 (2021) 4472–4477.  doi: 10.1039/d0ra10522h

    69. [69]

      X. Ma, C. Pang, S. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 41987–41996.  doi: 10.1021/acsami.1c10074

    70. [70]

      S. Zhang, L. Li, Y. Lu, et al., J. Mater. Chem. C 10 (2022) 5497–5504.  doi: 10.1039/d1tc05904a

    71. [71]

      X. Wen, Q. Huang, D. Nie, et al., Molecules 26 (2021) 2243.  doi: 10.3390/molecules26082243

    72. [72]

      W. Zhuge, Y. Liu, W. Huang, et al., Sens. Actuators B: Chem. 367 (2022) 132028.

    73. [73]

      A. Gumyusenge, T. Quill, G. Chen, et al., ChemRxiv (2022), doi: 10.26434/chemrxiv-2022-tlkgq.  doi: 10.26434/chemrxiv-2022-tlkgq

    74. [74]

      M.S. Yao, J.J. Zheng, A.Q. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 172–176.  doi: 10.1002/anie.201909096

    75. [75]

      M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Angew. Chem. Int. Ed. 54 (2015) 4349–4352.  doi: 10.1002/anie.201411854

    76. [76]

      C. Huang, X. Shang, X. Zhou, et al., Nat. Commun. 14 (2023) 3850.

    77. [77]

      M.S. Yao, J.W. Xiu, Q.Q. Huang, et al., Angew. Chem. Int. Ed. 58 (2019) 14915–14919.  doi: 10.1002/anie.201907772

    78. [78]

      Y. Lin, W.H. Li, Y. Wen, et al., Angew. Chem. Int. Ed. 60 (2021) 25758–25761.  doi: 10.1002/anie.202111519

    79. [79]

      Y. Huang, X. Zhang, S. Liu, et al., Chem. Eng. J. 458 (2023) 141364.

    80. [80]

      Y. Sun, B. Wang, Y. Hou, et al., Chem. Eng. J. 465 (2023) 142818.

    81. [81]

      S. Cho, C. Park, M. Jeon, et al., Chem. Eng. J. 449 (2022) 137780.

    82. [82]

      F. Zhang, C. Jiao, Y. Shang, et al., ACS Sens. 9 (2024) 1310–1320.  doi: 10.1021/acssensors.3c02200

    83. [83]

      H. Lim, H. Kwon, H. Kang, J.E. Jang, H.J. Kwon, Nat. Commun. 14 (2023) 3114.

    84. [84]

      X. Su, Z. Zhong, X. Yan, et al., Angew. Chem. Int. Ed. 62 (2023) e202302645.

    85. [85]

      A. Aykanat, C.G. Jones, E. Cline, et al., ACS Appl. Mater. Interfaces 13 (2021) 60306–60318.  doi: 10.1021/acsami.1c14453

    86. [86]

      S. Xu, X. Liu, J. Wu, J. Wu, ACS Sens. 8 (2023) 2348–2358.  doi: 10.1021/acssensors.3c00428

    87. [87]

      Z. Meng, A. Aykanat, K.A. Mirica, J. Am. Chem. Soc. 141 (2018) 2046–2053.

    88. [88]

      M.K. Smith, K.A. Mirica, J. Am. Chem. Soc. 139 (2017) 16759–16767.  doi: 10.1021/jacs.7b08840

    89. [89]

      I. Stassen, J.H. Dou, C. Hendon, M. Dincă, ACS Cent. Sci. 5 (2019) 1425–1431.  doi: 10.1021/acscentsci.9b00482

    90. [90]

      L. Li, S. Zhang, Y. Lu, et al., Adv. Mater. 33 (2021) 2104120.

    91. [91]

      B. Du, F. Yan, X. Lin, et al., Sens. Actuators B: Chem. 375 (2023) 132854.

    92. [92]

      X.C. Zhou, C. Liu, J. Su, et al., Angew. Chem. Int. Ed. 62 (2023) e202211850.

    93. [93]

      L. Zhang, C. Ye, X. Li, et al., Nano-Micro Lett. 10 (2018) 28.

    94. [94]

      Y. Zhou, Q. Hu, F. Yu, et al., J. Am. Chem. Soc. 142 (2020) 20313–20317.  doi: 10.1021/jacs.0c09009

    95. [95]

      Y. Chen, Y. Tian, P. Zhu, et al., Front. Chem. 8 (2020) 602752.

    96. [96]

      Y. Qiao, R. Zhang, F. He, et al., New J. Chem. 44 (2020) 17849–17853.  doi: 10.1039/d0nj04150e

    97. [97]

      Z. Xu, Q. Wang, H. Zhangsun, et al., Food Chem. 349 (2021) 129202.

    98. [98]

      Y. Shu, T. Su, Q. Lu, et al., Anal. Chem. 93 (2021) 16222–16230.  doi: 10.1021/acs.analchem.1c04106

    99. [99]

      X. Yang, J. Yi, T. Wang, et al., Adv. Mater. 34 (2022) 2201768.

    100. [100]

      T.Y. Huang, C.W. Kung, Y.T. Liao, et al., Adv. Sci. 4 (2017) 1700261.

    101. [101]

      M. Ko, L. Mendecki, A.M. Eagleton, et al., J. Am. Chem. Soc. 142 (2020) 11717–11733.  doi: 10.1021/jacs.9b13402

    102. [102]

      C. Keum, S. Park, H. Kim, et al., Chem. Eng. J. 456 (2023) 141079.

    103. [103]

      S. Chen, C. Wang, M. Zhang, et al., J. Hazard. Mater. 390 (2020) 122157.

    104. [104]

      X. An, D. Jiang, Q. Cao, et al., ACS Sens. 8 (2023) 2656–2663.  doi: 10.1021/acssensors.3c00497

    105. [105]

      W. Huang, Y. Chen, L. Wu, et al., Talanta 247 (2022) 123596.

    106. [106]

      Y. Yang, J.L. Zhang, W. -B. Liang, et al., Sens. Actuator. B: Chem. 362 (2022) 131802.

    107. [107]

      J.L. Zhang, S. Gao, Y. Yang, et al., Biosens. Bioelectron. 227 (2023) 115157.

  • 加载中
    1. [1]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    2. [2]

      Xuling PanWei CaiYou Huang . Recent advances in phosphine-mediated sequential annulations. Chinese Chemical Letters, 2025, 36(5): 110628-. doi: 10.1016/j.cclet.2024.110628

    3. [3]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    4. [4]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    5. [5]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    6. [6]

      Tong ZhaoKe WangFeiyu LiuShiyu ZhangShih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321

    7. [7]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    8. [8]

      Hao ChangRenzhong QiaoChao Li . Recent advances in functionalized macrocyclic polyamines for medicine applications. Chinese Chemical Letters, 2025, 36(7): 110675-. doi: 10.1016/j.cclet.2024.110675

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Tianyu SunZhoujun DongPaul Michael MaluguluTengfei ZhenLei WangYao ChenHaopeng Sun . Advances in design strategies and imaging applications of specific butyrylcholinesterase probes. Chinese Chemical Letters, 2025, 36(7): 110451-. doi: 10.1016/j.cclet.2024.110451

    11. [11]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    12. [12]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    13. [13]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    14. [14]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    15. [15]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    16. [16]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    17. [17]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    18. [18]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    19. [19]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    20. [20]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return