The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation
-
* Corresponding author.
E-mail address: wanglonglu@njupt.edu.cn (L. Wang)
Citation:
Chen Gu, Huacao Ji, Keyu Xu, Jianmei Chen, Kang Chen, Junan Pan, Ning Sun, Longlu Wang. The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation[J]. Chinese Chemical Letters,
;2025, 36(8): 110565.
doi:
10.1016/j.cclet.2024.110565
S. Aftab, M.Z. Iqbal, Y.S. Rim, Small 19 (2023) 2205418.
doi: 10.1002/smll.202205418
A. Amri, Z.T. Jiang, T. Pryor, et al., Renew. Sustain. Energy Rev. 36 (2014) 316–328.
doi: 10.1016/j.rser.2014.04.062
F.S. Awad, H.D. Kiriarachchi, K.M. AbouZeid, et al., ACS Appl. Energy Mater. 1 (2018) 976–985.
doi: 10.1021/acsaem.8b00109
U. Bairagi, J. Jacob, Desalination 535 (2022) 115801.
A. Brehant, V. Bonnelye, M. Perez, Desalination 144 (2002) 353–360.
doi: 10.1016/S0011-9164(02)00343-0
J.E. Callanan, G.A. Hope, R.D. Weir, et al., J. Chem. Thermodyn. 24 (1992) 627–638.
doi: 10.1016/S0021-9614(05)80034-5
Y. Liu, Z. Li, L. Wang, et al., Adv. Funct. Mater. 34 (2024) 2312666.
K. Chen, L. Li, J. Zhang, et al., ACS Appl. Energy Mater. 5 (2022) 13031–13041.
doi: 10.1021/acsaem.2c02728
W.J. Cosgrove, D.P. Loucks, Water Resour. Res. 51 (2015) 4823–4839.
doi: 10.1002/2014WR016869
M. Elimelech, W.A. Phillip, Science 333 (2011) 712–717.
doi: 10.1126/science.1200488
M. Gao, L. Zhu, C.K. Peh, et al., Energy Environ. Sci. 12 (2019) 841–864.
doi: 10.1039/c8ee01146j
C. Liu, L. Wang, Y. Tang, et al., Appl. Catal. B 164 (2015) 1–9.
T. Gao, Y. Wang, X. Wu, et al., Sci. Bull. 67 (2022) 1572–1580.
doi: 10.1016/j.scib.2022.07.004
C. Ge, D. Xu, H. Du, et al., Adv. Fiber Mater. 5 (2023) 791–818.
doi: 10.1007/s42765-022-00228-6
Y. Geng, W. Sun, P. Ying, et al., Adv. Funct. Mater. 31 (2021) 2007648.
L.F. Greenlee, D.F. Lawler, B.D. Freeman, et al., Water Res. 43 (2009) 2317–2348.
doi: 10.1016/j.watres.2009.03.010
Y. Guo, X. Zhao, F. Zhao, et al., Energy Environ. Sci. 13 (2020) 2087–2095.
doi: 10.1039/d0ee00399a
Z. Guo, G. Wang, X. Ming, et al., ACS Appl. Mater. Interfaces 10 (2018) 24583–24589.
doi: 10.1021/acsami.8b08019
S. He, C. Chen, Y. Kuang, et al., Energy Environ. Sci. 12 (2019) 1558–1567.
doi: 10.1039/c9ee00945k
G. Hummer, J.C. Rasaiah, J.P. Noworyta, et al., Nature 414 (2001) 188–190.
doi: 10.1038/35102535
A.E. Kabeel, M. Abdulaziz, E.M.S. El-Said, Int. J. Ambient Energy 37 (2016) 68–75.
doi: 10.1080/01430750.2014.882864
A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Desalination 221 (2008) 47–69.
doi: 10.1016/j.desal.2007.01.067
T.H.M. Lau, S. Wu, R. Kato, et al., ACS Catal. 9 (2019) 7527–7534.
doi: 10.1021/acscatal.9b01503
B.L. Li, J. Wang, H.L. Zou, et al., Adv. Funct. Mater. 26 (2016) 7034–7056.
doi: 10.1002/adfm.201602136
R. Li, Y. Shi, M. Alsaedi, et al., Environ. Sci. Technol. 52 (2018) 11367–11377.
doi: 10.1021/acs.est.8b02852
W. Li, X. Li, W. Chang, et al., Nano Res. 13 (2020) 3048–3056.
doi: 10.1007/s12274-020-2970-y
W. Li, X. Tian, X. Li, et al., J. Mater. Chem. A 9 (2021) 14859–14867.
doi: 10.1039/d1ta03014k
L. Wang, X. Liu, J. Luo, et al., Angew. Chem. 129 (2017) 7718–7722.
doi: 10.1002/ange.201703066
M.S. Mauter, M. Elimelech, Environ. Sci. Technol. 42 (2008) 5843–5859.
doi: 10.1021/es8006904
P. Liu, Y.B. Hu, X.Y. LI, et al., Angew. Chem. Int. Ed. 61 (2022) e202208587.
J. Wang, L. Fan, Z. Liu, et al., ACS Nano 13 (2019) 3703–3713.
doi: 10.1021/acsnano.9b00634
H. Liang, Q. Liao, N. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 19041–19046.
doi: 10.1002/anie.201911457
S. Lin, S. Nejati, C. Boo, et al., Environ. Sci. Technol. Lett. 1 (2014) 443–447.
doi: 10.1021/ez500267p
Q. Lu, W. Shi, H. Yang, et al., Adv. Mater. 32 (2020) 2001544.
X. Liu, Y. Tian, F. Chen, et al., J. Mater. Chem. A 10 (2022) 18657–18670.
doi: 10.1039/d2ta04365c
X. Liu, Y. Tian, Y. Wu, et al., J. Mater. Chem. A 9 (2021) 22313–22324.
doi: 10.1039/d1ta05068k
Y. Liu, S. Akin, L. Pan, et al., Sci. Adv. 5 (2019) eaaw2543.
Y. Liu, Z. Liu, Q. Huang, et al., J. Mater. Chem. A 7 (2019) 2581–2588.
doi: 10.1039/c8ta10227a
P. Luan, Y. Zhao, Q. Li, et al., Small 18 (2022) 2104320.
C.I. Lynch, S. Rao, M.S.P. Sansom, Chem. Rev. 120 (2020) 10298–10335.
doi: 10.1021/acs.chemrev.9b00830
J. Pan, X. Yu, J. Dong, et al., ACS Appl. Mater. Interfaces 13 (2021) 58124–58133.
doi: 10.1021/acsami.1c16603
G.K. Pearce, Desalination 222 (2008) 66–73.
doi: 10.1016/j.desal.2007.05.029
H. Peng, D. Wang, S. Fu, ACS Appl. Mater. Interfaces 13 (2021) 38405–38415.
doi: 10.1021/acsami.1c10877
H. Qi, T. Wei, W. Zhao, Adv. Mater. 31 (2019) 1903378.
G. Zhou, Y. Shan, L. Wang, et al., Nat. Commun. 10 (2019) 399.
doi: 10.1038/s41467-019-08358-z
J. Ren, Y. Ding, J. Gong, et al., Energy Environ. Mater. 6 (2023) e12376.
doi: 10.1002/eem2.12376
C. Du, Z. Yang, A. Mo, et al., Nano Res. 16 (2023) 10976–10984.
doi: 10.1007/s12274-023-5852-2
M. Sadrzadeh, T. Mohammadi, Desalination 221 (2008) 440–447.
doi: 10.1016/j.desal.2007.01.103
H. Shi, M. Yue, C.J. Zhang, et al., ACS Nano 14 (2020) 8678–8688.
doi: 10.1021/acsnano.0c03042
Y. Shi, C. Zhang, R. Li, et al., Environ. Sci. Technol. 52 (2018) 11822–11830.
doi: 10.1021/acs.est.8b03300
K. Siler-Evans, I.L. Azevedo, M.G. Morgan, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 11768–11773.
doi: 10.1073/pnas.1221978110
X. Su, M. Sun, T. Wei, et al., Adv. Funct. Mater. 32 (2021) 2108135.
X. Sun, X. Jia, J. Yang, et al., Solar RRL 6 (2022) 2100888.
S. Susarla, A. Kutana, J.A. Hachtel, et al., Adv. Mater. 29 (2017) 1702457.
doi: 10.1002/adma.201702457
J. Tang, T. Zheng, Z. Song, et al., ACS Appl. Mater. Interfaces 12 (2020) 18504–18511.
doi: 10.1021/acsami.0c01261
M. Zhang, X. Lu, Z. Wu, et al., J. Power Sources 613 (2024) 234923.
D. He, C. Zhang, G. Zeng, et al., Appl. Catal. B 258 (2019) 117957.
doi: 10.1016/j.apcatb.2019.117956
L. Wang, D. Liu, L. Jiang, et al., Nano Energy 98 (2022) 107192.
S. Wang, L. Wang, L. Xie et al., Nano Res. 15 (2022) 8.
doi: 10.3390/su15010008
Y. Wang, Z. Ma, Y. Chen, et al., Adv. Mater. 28 (2016) 10175–10181.
doi: 10.1002/adma.201603812
Y. Wang, J. Sun, N. Sun, et al., Chem. Commun. 60 (2024) 7397–7413.
doi: 10.1039/d4cc02012j
Y. Wang, X. Wu, P. Wu, et al., Sci. Bull. 66 (2021) 2479–2488.
doi: 10.1016/j.scib.2021.09.018
Y. Wang, X. Wu, X. Yang et al., Nano Energy 78 (2020) 105269.
Z. Wang, X. Wu, F. He, et al., Adv. Funct. Mater. 31 (2021) 2011114.
doi: 10.1002/adfm.202011114
K. Chen, J. Pan, W. Yin, et al., Chin. Chem. Lett. 34 (2023) 108226.
P. Wu, X. Wu, Y. Wang, et al., Water Res. 212 (2022) 118099.
doi: 10.1016/j.watres.2022.118099
S.L. Wu, L.N. Quan, Y.T. Huang, et al., ACS Appl. Mater. Interfaces 13 (2021) 39513–39522.
doi: 10.1021/acsami.1c12120
X. Wu, Y. Lu, X. Ren, et al., Adv. Mater. 36 (2024) 2313090.
doi: 10.1002/adma.202313090
X. Wu, Y. Wang, P. Wu, et al., Adv. Funct. Mater. 31 (2021) 2102618.
doi: 10.1002/adfm.202102618
Z. Wu, X. Chen, B. Yuan, et al., Chemosphere 239 (2020) 124745.
doi: 10.1016/j.chemosphere.2019.124745
Y. Xia, Q. Hou, H. Jubaer, et al., Energy Environ. Sci. 12 (2019) 1840–1847.
doi: 10.1039/c9ee00692c
S. Mejias, N. Thompson, R.M. Sedas, et al., Sci. Educ. 105 (2021) 209–231.
doi: 10.1002/sce.21605
R. Lv, J.A. Robinson, R.E. Schaak, et al., Acc. Chem. Res. 48 (2015) 56–64.
doi: 10.1021/ar5002846
C. Tang, Y. Min, C. Chen, et al., Nano Lett. 19 (2019) 5577–5586.
doi: 10.1021/acs.nanolett.9b02115
J. Zhou, M. Guo, L. Wang, et al., Chem. Eng. J. 366 (2019) 163–171.
Z. Xie, Y. Duo, Z. Lin, et al., Adv. Sci. 7 (2020) 1902236.
doi: 10.1002/advs.201902236
Z. Xie, Y. -P. Peng, L. Yu, et al., Solar RRL 4 (2020) 1900400.
D. Xu, Z. Li, L. Li, et al., Adv. Funct. Mater. 30 (2020) 2000712.
doi: 10.1002/adfm.202000712
T. Lan, X. Deng, Q. Wang, et al., ACS Appl. Nano Mater. 5 (2022) 10237–10247.
doi: 10.1021/acsanm.2c01224
Y. Xu, T. Xu, J. Wang, et al., ChemSusChem 13 (2020) 6635–6642.
doi: 10.1002/cssc.202002238
Z. Xu, X. Ran, D. Wang, et al., Desalination 525 (2022) 115495.
doi: 10.1016/j.desal.2021.115495
X. Yang, Y. Yang, L. Fu, et al., Adv. Func. Mater. 28 (2018) 1704505.
J. Wu, T. Zhang, J. Qu, et al., ACS Appl. Mater. Interfaces 15 (2023) 29457–29467.
doi: 10.1021/acsami.3c05198
J. Yao, Z. Zheng, G. Yang, Nanoscale 10 (2018) 2876–2886.
doi: 10.1039/c7nr09229f
Y. Zeng, H. Li, J. Luo, et al., Appl. Catal. B 249 (2019) 275–281.
M. Yousaf, Y. Wang, Y. Chen, et al., ACS Appl. Mater. Interfaces 10 (2018) 14622–14631.
doi: 10.1021/acsami.7b19739
P.G. Youssef, S.M. Mahmoud, R.K. Al-Dadah, Desalination 375 (2015) 100–107.
Z. Yu, R. Gu, Y. Tian, et al., Adv. Funct. Mater. 32 (2022) 2108586.
doi: 10.1002/adfm.202108586
Z. Yu, Y. Su, R. Gu, et al., Nano-Micro Lett. 15 (2023) 214.
doi: 10.1109/ddcls58216.2023.10166215
J. Yuan, X. Lei, C. Yi, et al., Chem. Eng. J. 430 (2022) 132765.
doi: 10.1016/j.cej.2021.132765
M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110 (2010) 6446–6473.
doi: 10.1021/cr1002326
F. Zhao, X. Zhou, Y. Shi, et al., Nat. Nanotechnol. 13 (2018) 489–495.
doi: 10.1038/s41565-018-0097-z
G. Zhao, Z. Wang, Y. Chen, et al., ACS Appl. Mater. Interfaces 14 (2022) 12927–12935.
doi: 10.1021/acsami.2c01076
X. Zhao, C. Liu, Desalination 482 (2020) 114385.
doi: 10.1016/j.desal.2020.114385
Y. Zheng, B. Cao, X. Tang, et al., ACS Nano 16 (2022) 2798–2810.
doi: 10.1021/acsnano.1c09791
X. Zhou, F. Zhao, Y. Guo, et al., Sci. Adv. 5 (2019) eaaw5484.
doi: 10.1126/sciadv.aaw5484
L. Zhu, M. Gao, C.K.N. Peh, et al., Mater. Horiz. 5 (2018) 323–343.
doi: 10.1039/c7mh01064h
Y. Li, B. Yu, H. Li, et al., Chin. Chem. Lett. 34 (2023) 107874.
J. Xiao, Y. Guo, W. Luo, et al., Nano Energy 87 (2021) 106213.
doi: 10.1016/j.nanoen.2021.106213
C. Li, Q. Cao, F. Wang, et al., Chem. Soc. Rev. 47 (2018) 4981–5037.
doi: 10.1039/c8cs00067k
L. Zang, L. Sun, S. Zhang, et al., Chem. Eng. J. 422 (2021) 129998.
doi: 10.1016/j.cej.2021.129998
P. Zhang, J. Li, L. Lv, et al., ACS Nano 11 (2017) 5087–5093.
doi: 10.1021/acsnano.7b01965
S. Zhang, B. Xu, X. Lu, et al., J. Mater. Chem. C 8 (2020) 6763–6770.
doi: 10.1039/d0tc00814a
X. Zhang, L. Jiang, Nano Res. 12 (2019) 1219–1221.
doi: 10.1007/s12274-019-2281-3
L. Xie, L. Wang, L. Xia, et al., Nat. Commun. 15 (2024) 5702.
doi: 10.1038/s41467-024-50117-2
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072
Jun Liu , Zhaoyu Feng , Renming Pan , Xiaolong Yu , Meijuan Zhou , Gang Zhao , Hongyu Wang . Enantioselective regulation to coronal polyheterocyclic compounds via phosphonium salt-catalyzed cycloadditions of azomethine imines with γ-butenolides. Chinese Chemical Letters, 2025, 36(8): 110647-. doi: 10.1016/j.cclet.2024.110647
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Lishan Xiong , Xinyuan Li , Xiaojie Lu , Zhendong Zhang , Yan Zhang , Wen Wu , Chenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Qiangqiang Zhou , Lili Sun , Yu-Jie Guo , Bo Zhou , Chunfang Zhang , Sen Xin , Le Yu , Gaohong Zhai . First-principles study on the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides and blue phosphorus. Chinese Chemical Letters, 2025, 36(7): 110187-. doi: 10.1016/j.cclet.2024.110187
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Haotian Zhang , Shengfa Feng , Mufan Cao , Xiong Xiong Liu , Pengcheng Yuan , Yaping Wang , Min Gao , Long Pan , Zhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096