Synergistic effect in enhancing treatment of micro-pollutants by ferrate and carbon materials: A review
-
* Corresponding authors.
E-mail addresses: duyeah@scu.edu.cn (Y. Du), laibo@scu.edu.cn (B. Lai).
Citation:
Xin Dai, Tong Liu, Ye Du, Jie-Yu Cao, Zhong-Juan Wang, Jie Li, Peng Zhou, Heng Zhang, Bo Lai. Synergistic effect in enhancing treatment of micro-pollutants by ferrate and carbon materials: A review[J]. Chinese Chemical Letters,
;2025, 36(8): 110548.
doi:
10.1016/j.cclet.2024.110548
Y. Gao, P. Champagne, D. Blair, et al., Water Sci. Technol. 81 (2020) 853–875.
doi: 10.2166/wst.2020.190
Y. Liu, F. Li, Y. Zhang, et al., Water Cycle 4 (2023) 145–153.
doi: 10.1117/12.2667868
H. Li, Y. Mo, L. Wang, et al., Water Cycle 4 (2023) 79–86.
B. Song, C. Zhou, M. Qin, et al., J. Environ. Manage. 345 (2023) 118518.
H. Lei, K. Yao, B. Yang, et al., Front. Env. Sci. Eng. 17 (2022) 46.
doi: 10.3390/nano13010046
M. Baratta, A.V. Nezhdanov, A.I. Mashin, et al., Sci. Total Environ. 924 (2024) 171578.
doi: 10.1016/j.scitotenv.2024.171578
K. Zhang, X. Liu, Y. Wang, et al., Water Air Soil Poll. 235 (2024) 162.
M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 35 (2009) 402–417.
doi: 10.1016/j.envint.2008.07.009 Full text linksCite
W. Wang, Z. Jing, Y. Zhang, et al., Environ. Sci. Technol. 58 (2024) 7113–7123.
doi: 10.1021/acs.est.3c08414
Z. Jeirani, C.H. Niu, J. Soltan, Rev. Chem. Eng. 33 (2017) 491–522.
doi: 10.1515/revce-2016-0027
M. Habib, M. Ali, T. Ayaz, et al., Environ. Pollut. 333 (2023) 122062.
doi: 10.1016/j.envpol.2023.122062
W. Ouyang, W. Wang, Y. Zhang, et al., Water Res. 228 (2023) 119390.
doi: 10.1016/j.watres.2022.119390
H. Cai, Q. Wu, W. Ouyang, et al., Water Res. 243 (2023) 120435.
doi: 10.1016/j.watres.2023.120435
Y. Liu, W. Qin, D. Zhang, et al., Prog. Nat. Sci.: Mater. 31 (2021) 14–18.
Y. Luo, W. Guo, H.H. Ngo, et al., Sci. Total Environ. (2014) 619–641 473-474.
doi: 10.1016/j.scitotenv.2013.12.065
B. Bishayee, A. Rai, A. Kumar, et al., Chem. Eng. Res. Des. 194 (2023) 439–460.
Y. Yang, X. Zhang, J. Jiang, et al., Environ. Sci. Technol. 56 (2022) 13–29.
doi: 10.1021/acs.est.1c04250
V.K. Sharma, Coordin. Chem. Rev. 257 (2013) 495–510.
doi: 10.1016/j.ccr.2012.04.014
D. Majid, A.R. Prabowo, Mater. Today: Proc. 63 (2022) S282–S286.
S. Zhang, J. Jiang, M. Petri, Environ. Challen. 8 (2022) 100552.
A.H. Alshahri, M. Giagnorio, A.H.A. Dehwah, et al., Desalination 537 (2022) 115864.
doi: 10.1016/j.desal.2022.115864
X. Sun, Q. Zhang, H. Liang, et al., J. Hazard. Mater. 319 (2016) 130–136.
Y. Lee, U. von Gunten, Water Res. 44 (2010) 555–566.
doi: 10.1016/j.watres.2009.11.045
F. Widhiastuti, L. Fan, J. Paz-Ferreiro, et al., J. Environ. 9 (2021) 105462.
X. Qi, N. Liu, Z. Tang, et al., Sci. Total Environ. 871 (2023) 162043.
X. Guan, D. He, J. Ma, et al., Front. Environ. Sci. Eng. 4 (2010) 405–413.
doi: 10.1007/s11783-010-0252-8
J. Cao, Y. Du, X. Dai, et al., Chem. Eng. J. 489 (2024) 151180.
H. Dong, Z. Qiang, J. Lian, et al., J. Hazard. Mater. 336 (2017) 65–70.
H. Dong, Y. Li, S. Wang, et al., Environ. Sci. Tech. Lett. 7 (2020) 219–224.
doi: 10.1021/acs.estlett.0c00025
X. Zhang, M. Feng, C. Luo, et al., Environ. Sci. Technol. 55 (2021) 623–633.
J. Zhu, F. Yu, J. Meng, et al., Environ. Sci. Technol. 54 (2020) 9702–9710.
doi: 10.1021/acs.est.0c03212
V.K. Sharma, M. Feng, D.D. Dionysiou, et al., Environ. Sci. Technol. 56 (2022) 30–47.
doi: 10.1021/acs.est.1c04616
C.D. Spellman, J.E. Goodwill, Water Res. 229 (2023) 119400.
J. Zhao, H. Zhang, Y. Shi, et al., J. Hazard. Mater. 458 (2023) 131927.
X. Li, Y. Wang, N. Wang, et al., J. Environ. Sci. : China 135 (2024) 367–378.
B. Lesbayev, M. Auyelkhankyzy, G. Ustayeva, et al., S. Afr. J. Chem. Eng. 43 (2023) 327–336.
M. Shi, X. Wang, M.Y. Shao, et al., Front. Env. Sci. Eng. 17 (2023) 1.
C. Peiris, S. Nawalage, J.J. Wewalwela, et al., Environ. Res. 191 (2020) 110183.
S.K. Asefa, V.R. Ancha, N.G. Habtu, et al., Water Reuse 13 (2023) 459–474.
doi: 10.2166/wrd.2023.061
H.M. Breunig, J. Amirebrahimi, S. Smith, et al., Environ. Sci. Technol. 53 (2019) 12989–12998.
doi: 10.1021/acs.est.9b03763
Y. Cao, S. Jiang, X. Kang, et al., Chemosphere 285 (2021) 131399.
E. Lam, J.H.T. Luong, ACS Catal. 4 (2014) 3393–3410.
doi: 10.1021/cs5008393
M. Shi, X. Wang, M. Shao, et al., Front. Env. Sci. Eng. 17 (2022) 5.
J. Qu, Z. Wu, Y. Liu, et al., Bioresource Technol. 360 (2022) 127407.
J. Silvestre-Albero, M. Martínez-Escandell, J. Narciso, et al., Carbon N Y 179 (2021) 275–287.
doi: 10.1016/j.carbon.2021.04.015
C.S.D. Rodrigues, S.N.A. Aziz, M.F.R. Pereira, et al., J. Environ. Manage. 343 (2023) 118140.
L. Xiao, Y. Deng, H. Zhou, et al., Chin. Chem. Lett. 34 (2023) 108407.
J. Xu, J. Song, Y. Min, et al., Chin. Chem. Lett. 33 (2022) 3113–3118.
Y. Yang, X. Ma, S. Zhang, et al., J. Environ. 11 (2023) 110165.
X. Li, Q. Zhao, L. Li, et al., J. Environ. Manage. 354 (2024) 120268.
C.H. Kwak, C. Lim, S. Kim, et al., J. Ind. Eng. Chem. 116 (2022) 21–31.
doi: 10.1016/j.jiec.2022.08.043
X. Zhang, J. Hou, S. Zhang, et al., Biochar 6 (2024) 12.
Y. Xiang, Z. Xu, Y. Wei, et al., J. Environ. Manage. 237 (2019) 128–138.
doi: 10.1016/j.jenvman.2019.02.068
B. Pan, M. Feng, J. Qin, et al., Chem. Eng. J. 428 (2022) 132610.
M. Luo, H. Zhang, P. Zhou, et al., J. Hazard. Mater. 434 (2022) 128827.
S. Tian, L. Wang, Y. Liu, et al., Water Res. 183 (2020) 116054.
J. Peng, Y. He, C. Zhou, et al., Chin. Chem. Lett. 32 (2021) 1626–1636.
B. Shao, H. Dong, L. Feng, et al., J. Hazard. Mater. 384 (2020) 121303.
B. Pan, M. Feng, T.J. McDonald, et al., Chem. Eng. J. 398 (2020) 125607.
Y. Wang, H. Liu, G. Liu, et al., Sci. Total Environ. (2015) 252–258 506-507.
J. Zhang, L. Wang, Y. Liu, et al., Chem. Eng. J. 370 (2019) 962–972.
Y. Wang, Y. Liu, S. Tian, et al., J. Hazard. Mater. 416 (2021) 126128.
D. Majid, I. Kim, F.B. Laksono, et al. Toxics. 9 (2021) 12.
Z. Cirena, Y. Nie, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 107726.
T. Yang, L. Wang, Y. Liu, et al., Chem. Eng. J. 383 (2020) 123167.
C. Guan, J. Jiang, C. Luo, et al., Chem. Eng. J. 337 (2018) 40–50.
A.A. Dar, B. Pan, J. Qin, et al., Environ. Pollut. 290 (2021) 117957.
L. Sailo, D. Tiwari, S. Lee, Sep. Sci. Technol. 52 (2017) 2756–2766.
X. Chen, H. Mao, Y. Cui, et al., Water Cycle 4 (2023) 170–178.
L.B. Stadler, A.S. Ernstoff, D.S. Aga, et al., Environ. Sci. Technol. 46 (2012) 10485–10486.
doi: 10.1021/es303478w
T. Yang, L. Wang, Y. Liu, et al., Environ. Sci. Technol. 52 (2018) 13325–13335.
doi: 10.1021/acs.est.8b01718
H. Li, J. Fei, S. Chen, et al., Water Cycle 4 (2023) 127–134.
H. Li, R. Qiu, Y. Tang, et al., Chem. Eng. J. 461 (2023) 141951.
J. Dobrzyńska, A. Wysokińska, R. Olchowski, J. Environ. Manage. 316 (2022) 115260.
H. Zou, J. Zhao, F. He, et al., J. Hazard. Mater. 413 (2021) 125252.
doi: 10.1016/j.jhazmat.2021.125252
M. Qadafi, D.R. Wulan, S. Notodarmojo, et al., Water Cycle 4 (2023) 60–69.
doi: 10.1016/j.watcyc.2023.02.005
Y. Liu, T. Yang, L. Wang, et al., Water Res. 145 (2018) 12–20.
doi: 10.1117/12.2305242
Z. Zhang, X. Li, C. Zhang, et al., J. Environ. Chem. Eng. 9 (2021) 104625.
Y. Zhou, Y. Wu, Y. Lei, et al., Environ. Sci. Technol. 55 (2021) 14844–14853.
doi: 10.1021/acs.est.1c04238
R. Li, X. Wu, Z. Han, et al., Chem. Eng. J. 474 (2023) 145547.
C. Liu, L. Chen, D. Ding, et al., Appl. Catal. B: Environ. 254 (2019) 312–320.
doi: 10.1016/j.apcatb.2019.05.014
D. Ouyang, Y. Chen, J. Yan, et al., Chem. Eng. J. 370 (2019) 614–624.
doi: 10.1016/j.cej.2019.03.235
C. Luo, M. Sadhasivan, J. Kim, et al., Environ. Sci. Technol. 55 (2021) 3976–3987.
doi: 10.1021/acs.est.0c07792
H. Fu, H. Liu, J. Mao, et al., Environ. Sci. Technol. 50 (2016) 1218–1226.
doi: 10.1021/acs.est.5b04314
H. Li, C. Shan, W. Li, et al., Water Res. 147 (2018) 233–241.
doi: 10.1163/9781684170944_012
H. Zhang, M. Luo, P. Zhou, et al., J. Hazard. Mater. 425 (2022) 128045.
B. Shao, H. Dong, B. Sun, et al., Environ. Sci. Technol. 53 (2019) 894–902.
doi: 10.1021/acs.est.8b04990
B. Shao, J. Qiao, Z. Zhao, et al., Chin. Sci. Bull. 64 (2019) 3401–3411.
Y. Qi, J. Wei, R. Qu, et al., Chem. Eng. J. 403 (2021) 126396.
C. Wang, X. Wang, W. Wu, et al., Sep. Purif. Technol. 323 (2023) 124302.
A.A. Monge, N. Ferrer-Anglada, V. Lloveras, et al., Phys. Status Solidi B 248 (2011) 2564–2567.
doi: 10.1002/pssb.201100110
C. Luo, M. Feng, V.K. Sharma, et al., Chem. Eng. J. 388 (2020) 124134.
doi: 10.1016/j.cej.2020.124134
G. Fang, C. Liu, J. Gao, et al., Ind. Eng. Chem. Res. 53 (2014) 19925–19933.
doi: 10.1021/ie504184r
X. Yang, Y. Yang, X. Han, et al., J. Environ. Chem. Eng. 11 (2023) 110512.
J. Yan, X. Zuo, S. Yang, et al., J. Hazard. Mater. 424 (2022) 127435.
K. Luo, Y. Pang, D. Wang, et al., J. Environ. Sci. : China 108 (2021) 201–216.
G. Fang, J. Gao, C. Liu, et al., Environ. Sci. Technol. 48 (2014) 1902–1910.
doi: 10.1021/es4048126
J. Guo, H. Xiao, J.B. Zhang, et al., Biomass Convers. Bior. 14 (2022) 13311–13321.
J. Yang, B. Pan, H. Li, et al., Environ. Sci. Technol. 50 (2016) 694–700.
doi: 10.1021/acs.est.5b04042
J. Yu, L. Tang, Y. Pang, et al., Appl. Catal. B: Environ. 260 (2020) 118160.
doi: 10.1016/j.apcatb.2019.118160
Y. Yue, Z. Yu, X. Yue, et al., Int. J. Low Carbon Technol. 19 (2024) 135–141.
doi: 10.1093/ijlct/ctad042
H.T. Qiao, Y.S. Qiao, C.Z. Sun, et al., Front. Env. Sci. Eng. 17 (2023) 6.
V.K. Sharma, N.J.D. Graham, X. Li, et al., Environ. Sci. Pollut. R. 17 (2010) 453–461.
doi: 10.1007/s11356-009-0170-0
X. Zhang, P. Zhang, X. Yuan, et al., Bioresource Technol. 296 (2020) 122318.
doi: 10.1016/j.biortech.2019.122318
D. Zhong, Y. Jiang, Z. Zhao, et al., Environ. Sci. Technol. 53 (2019) 9034–9044.
doi: 10.1021/acs.est.9b00756
S. Sun, J. Jiang, L. Qiu, et al., Water Res. 156 (2019) 1–8.
O.J. Al-sareji, R.A. Grmasha, M. Meiczinger, et al., Materials (Basel) 17 (2024) 1032.
doi: 10.3390/ma17051032
K. Nadarajah, T. Asharp, Y. Jeganathan, Water Sci. Technol. 89 (2024) 1211–1239.
doi: 10.2166/wst.2024.051
X. Chen, X. Wang, D. Fang, Fuller. Nanotub. Car. N. 28 (2020) 1048–1058.
doi: 10.1080/1536383x.2020.1794851
W. Wei, J. Luo, S. Liu, et al., J. Solid State Chem. 312 (2022) 123160.
M. Xu, H. Zhou, Z. Wu, et al., J. Hazard. Mater. 399 (2020) 123103.
R. Ma, X. Xu, Y. Zhang, et al., Environ. Sci. Pollut. R. 31 (2024) 8538–8551.
doi: 10.1007/s11356-023-31654-7
Y. Yao, H. Yin, Y. Zhang, et al., Chem. Eng. J. 426 (2021) 131801.
Y. Cui, X. Chen, C. Pitakrattanawong, et al., Water Reuse 14 (2023) 65–79.
Y. Liu, X. Zhang, L. Zhao, Water Cycle 4 (2023) 179–191.
X.Z. Ma, X.Y. Hao, X.L. Chen, et al., Spectrosc. Spect. Anal. 36 (2016) 1670–1673.
R. Zheng, Z. Xu, Q. Qiu, et al., Environ. Res. 244 (2024) 117849.
Y. Luo, L. Zeng, Y. Zhao, et al., J. Water Process. Eng. 47 (2022) 102743.
B. Pan, L. Zhou, J. Qin, et al., Chemosphere 307 (2022) 135886.
J. Li, Y. Du, E. Zhao, et al., Chem. Eng. J. 461 (2023) 141832.
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Qiao Song , Xue Peng , Zhouyu Wang , Leyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Zhongchao Zhou , Jian Song , Yinghao Xie , Yuqian Ma , Hong Hu , Hui Li , Lei Zhang , Charles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Bofeng Li , Yuxian Wang , Ya Liu , Zhe Han , Tiantian Xing , Yumin Zhang , Chunmao Chen . Design and engineering strategies of porous carbonaceous catalysts toward activation of peroxides for aqueous organic pollutants oxidation. Chinese Chemical Letters, 2025, 36(6): 110374-. doi: 10.1016/j.cclet.2024.110374
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Yusheng Lu , Chaofeng Huang , Zhigang Lei , Mingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847