Citation: Xin Dai, Tong Liu, Ye Du, Jie-Yu Cao, Zhong-Juan Wang, Jie Li, Peng Zhou, Heng Zhang, Bo Lai. Synergistic effect in enhancing treatment of micro-pollutants by ferrate and carbon materials: A review[J]. Chinese Chemical Letters, ;2025, 36(8): 110548. doi: 10.1016/j.cclet.2024.110548 shu

Synergistic effect in enhancing treatment of micro-pollutants by ferrate and carbon materials: A review

    * Corresponding authors.
    E-mail addresses: duyeah@scu.edu.cn (Y. Du), laibo@scu.edu.cn (B. Lai).
  • Received Date: 29 May 2024
    Revised Date: 8 October 2024
    Accepted Date: 12 October 2024
    Available Online: 13 October 2024

Figures(10)

  • Ferrate [Fe(Ⅵ)] has demonstrated its efficacy as a potent oxidizing agent in the treatment of wastewater, showcasing its potential for application in environmental remediation. The self-decomposition of Fe(Ⅵ) results in the formation of Fe(Ⅳ)/Fe(Ⅴ), which exhibits remarkable reactivity and selectivity towards the degradation of electron-rich micro-pollutants. Here we presented a comprehensive review on the removal of micro-pollutants in Fe(Ⅵ)/carbon materials (CMs) systems, encompassing an analysis of the oxidation mechanism and mutual activation, thereby providing guidance for the efficient elimination of recalcitrant micro-pollutants. The combnation of Fe(Ⅵ) and CMs can significantly enhanced the removal efficiency of various pollutants, with an increase ranges from 30% to 70%. The rate constants for pseudo-first order reactions were increased ranging from 3 to 14 times, while the total organic carbon (TOC) removal rate was effectively doubled. The presence of active species, including hydroxyl radicals, superoxide radical and Fe(Ⅳ)/Fe(Ⅴ) generated by Fe(Ⅵ) and CMs, can significantly enhance the oxidation efficiency of micro-pollutants which are not easily degraded solely by Fe(Ⅵ) or CMs. Furthermore, Fe(Ⅵ) can enhance the surface area and void volume of CMs, thereby reinforcing the adsorption capacity towards micro-pollutants.
  • 加载中
    1. [1]

      Y. Gao, P. Champagne, D. Blair, et al., Water Sci. Technol. 81 (2020) 853–875.  doi: 10.2166/wst.2020.190

    2. [2]

      Y. Liu, F. Li, Y. Zhang, et al., Water Cycle 4 (2023) 145–153.  doi: 10.1117/12.2667868

    3. [3]

      H. Li, Y. Mo, L. Wang, et al., Water Cycle 4 (2023) 79–86.

    4. [4]

      B. Song, C. Zhou, M. Qin, et al., J. Environ. Manage. 345 (2023) 118518.

    5. [5]

      H. Lei, K. Yao, B. Yang, et al., Front. Env. Sci. Eng. 17 (2022) 46.  doi: 10.3390/nano13010046

    6. [6]

      M. Baratta, A.V. Nezhdanov, A.I. Mashin, et al., Sci. Total Environ. 924 (2024) 171578.  doi: 10.1016/j.scitotenv.2024.171578

    7. [7]

      K. Zhang, X. Liu, Y. Wang, et al., Water Air Soil Poll. 235 (2024) 162.

    8. [8]

      M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 35 (2009) 402–417.  doi: 10.1016/j.envint.2008.07.009 Full text linksCite

    9. [9]

      W. Wang, Z. Jing, Y. Zhang, et al., Environ. Sci. Technol. 58 (2024) 7113–7123.  doi: 10.1021/acs.est.3c08414

    10. [10]

      Z. Jeirani, C.H. Niu, J. Soltan, Rev. Chem. Eng. 33 (2017) 491–522.  doi: 10.1515/revce-2016-0027

    11. [11]

      M. Habib, M. Ali, T. Ayaz, et al., Environ. Pollut. 333 (2023) 122062.  doi: 10.1016/j.envpol.2023.122062

    12. [12]

      W. Ouyang, W. Wang, Y. Zhang, et al., Water Res. 228 (2023) 119390.  doi: 10.1016/j.watres.2022.119390

    13. [13]

      H. Cai, Q. Wu, W. Ouyang, et al., Water Res. 243 (2023) 120435.  doi: 10.1016/j.watres.2023.120435

    14. [14]

      Y. Liu, W. Qin, D. Zhang, et al., Prog. Nat. Sci.: Mater. 31 (2021) 14–18.

    15. [15]

      Y. Luo, W. Guo, H.H. Ngo, et al., Sci. Total Environ. (2014) 619–641 473-474.  doi: 10.1016/j.scitotenv.2013.12.065

    16. [16]

      B. Bishayee, A. Rai, A. Kumar, et al., Chem. Eng. Res. Des. 194 (2023) 439–460.

    17. [17]

      Y. Yang, X. Zhang, J. Jiang, et al., Environ. Sci. Technol. 56 (2022) 13–29.  doi: 10.1021/acs.est.1c04250

    18. [18]

      V.K. Sharma, Coordin. Chem. Rev. 257 (2013) 495–510.  doi: 10.1016/j.ccr.2012.04.014

    19. [19]

      D. Majid, A.R. Prabowo, Mater. Today: Proc. 63 (2022) S282–S286.

    20. [20]

      S. Zhang, J. Jiang, M. Petri, Environ. Challen. 8 (2022) 100552.

    21. [21]

      A.H. Alshahri, M. Giagnorio, A.H.A. Dehwah, et al., Desalination 537 (2022) 115864.  doi: 10.1016/j.desal.2022.115864

    22. [22]

      X. Sun, Q. Zhang, H. Liang, et al., J. Hazard. Mater. 319 (2016) 130–136.

    23. [23]

      Y. Lee, U. von Gunten, Water Res. 44 (2010) 555–566.  doi: 10.1016/j.watres.2009.11.045

    24. [24]

      F. Widhiastuti, L. Fan, J. Paz-Ferreiro, et al., J. Environ. 9 (2021) 105462.

    25. [25]

      X. Qi, N. Liu, Z. Tang, et al., Sci. Total Environ. 871 (2023) 162043.

    26. [26]

      X. Guan, D. He, J. Ma, et al., Front. Environ. Sci. Eng. 4 (2010) 405–413.  doi: 10.1007/s11783-010-0252-8

    27. [27]

      J. Cao, Y. Du, X. Dai, et al., Chem. Eng. J. 489 (2024) 151180.

    28. [28]

      H. Dong, Z. Qiang, J. Lian, et al., J. Hazard. Mater. 336 (2017) 65–70.

    29. [29]

      H. Dong, Y. Li, S. Wang, et al., Environ. Sci. Tech. Lett. 7 (2020) 219–224.  doi: 10.1021/acs.estlett.0c00025

    30. [30]

      X. Zhang, M. Feng, C. Luo, et al., Environ. Sci. Technol. 55 (2021) 623–633.

    31. [31]

      J. Zhu, F. Yu, J. Meng, et al., Environ. Sci. Technol. 54 (2020) 9702–9710.  doi: 10.1021/acs.est.0c03212

    32. [32]

      V.K. Sharma, M. Feng, D.D. Dionysiou, et al., Environ. Sci. Technol. 56 (2022) 30–47.  doi: 10.1021/acs.est.1c04616

    33. [33]

      C.D. Spellman, J.E. Goodwill, Water Res. 229 (2023) 119400.

    34. [34]

      J. Zhao, H. Zhang, Y. Shi, et al., J. Hazard. Mater. 458 (2023) 131927.

    35. [35]

      X. Li, Y. Wang, N. Wang, et al., J. Environ. Sci. : China 135 (2024) 367–378.

    36. [36]

      B. Lesbayev, M. Auyelkhankyzy, G. Ustayeva, et al., S. Afr. J. Chem. Eng. 43 (2023) 327–336.

    37. [37]

      M. Shi, X. Wang, M.Y. Shao, et al., Front. Env. Sci. Eng. 17 (2023) 1.

    38. [38]

      C. Peiris, S. Nawalage, J.J. Wewalwela, et al., Environ. Res. 191 (2020) 110183.

    39. [39]

      S.K. Asefa, V.R. Ancha, N.G. Habtu, et al., Water Reuse 13 (2023) 459–474.  doi: 10.2166/wrd.2023.061

    40. [40]

      H.M. Breunig, J. Amirebrahimi, S. Smith, et al., Environ. Sci. Technol. 53 (2019) 12989–12998.  doi: 10.1021/acs.est.9b03763

    41. [41]

      Y. Cao, S. Jiang, X. Kang, et al., Chemosphere 285 (2021) 131399.

    42. [42]

      E. Lam, J.H.T. Luong, ACS Catal. 4 (2014) 3393–3410.  doi: 10.1021/cs5008393

    43. [43]

      M. Shi, X. Wang, M. Shao, et al., Front. Env. Sci. Eng. 17 (2022) 5.

    44. [44]

      J. Qu, Z. Wu, Y. Liu, et al., Bioresource Technol. 360 (2022) 127407.

    45. [45]

      J. Silvestre-Albero, M. Martínez-Escandell, J. Narciso, et al., Carbon N Y 179 (2021) 275–287.  doi: 10.1016/j.carbon.2021.04.015

    46. [46]

      C.S.D. Rodrigues, S.N.A. Aziz, M.F.R. Pereira, et al., J. Environ. Manage. 343 (2023) 118140.

    47. [47]

      L. Xiao, Y. Deng, H. Zhou, et al., Chin. Chem. Lett. 34 (2023) 108407.

    48. [48]

      J. Xu, J. Song, Y. Min, et al., Chin. Chem. Lett. 33 (2022) 3113–3118.

    49. [49]

      Y. Yang, X. Ma, S. Zhang, et al., J. Environ. 11 (2023) 110165.

    50. [50]

      X. Li, Q. Zhao, L. Li, et al., J. Environ. Manage. 354 (2024) 120268.

    51. [51]

      C.H. Kwak, C. Lim, S. Kim, et al., J. Ind. Eng. Chem. 116 (2022) 21–31.  doi: 10.1016/j.jiec.2022.08.043

    52. [52]

      X. Zhang, J. Hou, S. Zhang, et al., Biochar 6 (2024) 12.

    53. [53]

      Y. Xiang, Z. Xu, Y. Wei, et al., J. Environ. Manage. 237 (2019) 128–138.  doi: 10.1016/j.jenvman.2019.02.068

    54. [54]

      B. Pan, M. Feng, J. Qin, et al., Chem. Eng. J. 428 (2022) 132610.

    55. [55]

      M. Luo, H. Zhang, P. Zhou, et al., J. Hazard. Mater. 434 (2022) 128827.

    56. [56]

      S. Tian, L. Wang, Y. Liu, et al., Water Res. 183 (2020) 116054.

    57. [57]

      J. Peng, Y. He, C. Zhou, et al., Chin. Chem. Lett. 32 (2021) 1626–1636.

    58. [58]

      B. Shao, H. Dong, L. Feng, et al., J. Hazard. Mater. 384 (2020) 121303.

    59. [59]

      B. Pan, M. Feng, T.J. McDonald, et al., Chem. Eng. J. 398 (2020) 125607.

    60. [60]

      Y. Wang, H. Liu, G. Liu, et al., Sci. Total Environ. (2015) 252–258 506-507.

    61. [61]

      J. Zhang, L. Wang, Y. Liu, et al., Chem. Eng. J. 370 (2019) 962–972.

    62. [62]

      Y. Wang, Y. Liu, S. Tian, et al., J. Hazard. Mater. 416 (2021) 126128.

    63. [63]

      D. Majid, I. Kim, F.B. Laksono, et al. Toxics. 9 (2021) 12.

    64. [64]

      Z. Cirena, Y. Nie, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 107726.

    65. [65]

      T. Yang, L. Wang, Y. Liu, et al., Chem. Eng. J. 383 (2020) 123167.

    66. [66]

      C. Guan, J. Jiang, C. Luo, et al., Chem. Eng. J. 337 (2018) 40–50.

    67. [67]

      A.A. Dar, B. Pan, J. Qin, et al., Environ. Pollut. 290 (2021) 117957.

    68. [68]

      L. Sailo, D. Tiwari, S. Lee, Sep. Sci. Technol. 52 (2017) 2756–2766.

    69. [69]

      X. Chen, H. Mao, Y. Cui, et al., Water Cycle 4 (2023) 170–178.

    70. [70]

      L.B. Stadler, A.S. Ernstoff, D.S. Aga, et al., Environ. Sci. Technol. 46 (2012) 10485–10486.  doi: 10.1021/es303478w

    71. [71]

      T. Yang, L. Wang, Y. Liu, et al., Environ. Sci. Technol. 52 (2018) 13325–13335.  doi: 10.1021/acs.est.8b01718

    72. [72]

      H. Li, J. Fei, S. Chen, et al., Water Cycle 4 (2023) 127–134.

    73. [73]

      H. Li, R. Qiu, Y. Tang, et al., Chem. Eng. J. 461 (2023) 141951.

    74. [74]

      J. Dobrzyńska, A. Wysokińska, R. Olchowski, J. Environ. Manage. 316 (2022) 115260.

    75. [75]

      H. Zou, J. Zhao, F. He, et al., J. Hazard. Mater. 413 (2021) 125252.  doi: 10.1016/j.jhazmat.2021.125252

    76. [76]

      M. Qadafi, D.R. Wulan, S. Notodarmojo, et al., Water Cycle 4 (2023) 60–69.  doi: 10.1016/j.watcyc.2023.02.005

    77. [77]

      Y. Liu, T. Yang, L. Wang, et al., Water Res. 145 (2018) 12–20.  doi: 10.1117/12.2305242

    78. [78]

      Z. Zhang, X. Li, C. Zhang, et al., J. Environ. Chem. Eng. 9 (2021) 104625.

    79. [79]

      Y. Zhou, Y. Wu, Y. Lei, et al., Environ. Sci. Technol. 55 (2021) 14844–14853.  doi: 10.1021/acs.est.1c04238

    80. [80]

      R. Li, X. Wu, Z. Han, et al., Chem. Eng. J. 474 (2023) 145547.

    81. [81]

      C. Liu, L. Chen, D. Ding, et al., Appl. Catal. B: Environ. 254 (2019) 312–320.  doi: 10.1016/j.apcatb.2019.05.014

    82. [82]

      D. Ouyang, Y. Chen, J. Yan, et al., Chem. Eng. J. 370 (2019) 614–624.  doi: 10.1016/j.cej.2019.03.235

    83. [83]

      C. Luo, M. Sadhasivan, J. Kim, et al., Environ. Sci. Technol. 55 (2021) 3976–3987.  doi: 10.1021/acs.est.0c07792

    84. [84]

      H. Fu, H. Liu, J. Mao, et al., Environ. Sci. Technol. 50 (2016) 1218–1226.  doi: 10.1021/acs.est.5b04314

    85. [85]

      H. Li, C. Shan, W. Li, et al., Water Res. 147 (2018) 233–241.  doi: 10.1163/9781684170944_012

    86. [86]

      H. Zhang, M. Luo, P. Zhou, et al., J. Hazard. Mater. 425 (2022) 128045.

    87. [87]

      B. Shao, H. Dong, B. Sun, et al., Environ. Sci. Technol. 53 (2019) 894–902.  doi: 10.1021/acs.est.8b04990

    88. [88]

      B. Shao, J. Qiao, Z. Zhao, et al., Chin. Sci. Bull. 64 (2019) 3401–3411.

    89. [89]

      Y. Qi, J. Wei, R. Qu, et al., Chem. Eng. J. 403 (2021) 126396.

    90. [90]

      C. Wang, X. Wang, W. Wu, et al., Sep. Purif. Technol. 323 (2023) 124302.

    91. [91]

      A.A. Monge, N. Ferrer-Anglada, V. Lloveras, et al., Phys. Status Solidi B 248 (2011) 2564–2567.  doi: 10.1002/pssb.201100110

    92. [92]

      C. Luo, M. Feng, V.K. Sharma, et al., Chem. Eng. J. 388 (2020) 124134.  doi: 10.1016/j.cej.2020.124134

    93. [93]

      G. Fang, C. Liu, J. Gao, et al., Ind. Eng. Chem. Res. 53 (2014) 19925–19933.  doi: 10.1021/ie504184r

    94. [94]

      X. Yang, Y. Yang, X. Han, et al., J. Environ. Chem. Eng. 11 (2023) 110512.

    95. [95]

      J. Yan, X. Zuo, S. Yang, et al., J. Hazard. Mater. 424 (2022) 127435.

    96. [96]

      K. Luo, Y. Pang, D. Wang, et al., J. Environ. Sci. : China 108 (2021) 201–216.

    97. [97]

      G. Fang, J. Gao, C. Liu, et al., Environ. Sci. Technol. 48 (2014) 1902–1910.  doi: 10.1021/es4048126

    98. [98]

      J. Guo, H. Xiao, J.B. Zhang, et al., Biomass Convers. Bior. 14 (2022) 13311–13321.

    99. [99]

      J. Yang, B. Pan, H. Li, et al., Environ. Sci. Technol. 50 (2016) 694–700.  doi: 10.1021/acs.est.5b04042

    100. [100]

      J. Yu, L. Tang, Y. Pang, et al., Appl. Catal. B: Environ. 260 (2020) 118160.  doi: 10.1016/j.apcatb.2019.118160

    101. [101]

      Y. Yue, Z. Yu, X. Yue, et al., Int. J. Low Carbon Technol. 19 (2024) 135–141.  doi: 10.1093/ijlct/ctad042

    102. [102]

      H.T. Qiao, Y.S. Qiao, C.Z. Sun, et al., Front. Env. Sci. Eng. 17 (2023) 6.

    103. [103]

      V.K. Sharma, N.J.D. Graham, X. Li, et al., Environ. Sci. Pollut. R. 17 (2010) 453–461.  doi: 10.1007/s11356-009-0170-0

    104. [104]

      X. Zhang, P. Zhang, X. Yuan, et al., Bioresource Technol. 296 (2020) 122318.  doi: 10.1016/j.biortech.2019.122318

    105. [105]

      D. Zhong, Y. Jiang, Z. Zhao, et al., Environ. Sci. Technol. 53 (2019) 9034–9044.  doi: 10.1021/acs.est.9b00756

    106. [106]

      S. Sun, J. Jiang, L. Qiu, et al., Water Res. 156 (2019) 1–8.

    107. [107]

      O.J. Al-sareji, R.A. Grmasha, M. Meiczinger, et al., Materials (Basel) 17 (2024) 1032.  doi: 10.3390/ma17051032

    108. [108]

      K. Nadarajah, T. Asharp, Y. Jeganathan, Water Sci. Technol. 89 (2024) 1211–1239.  doi: 10.2166/wst.2024.051

    109. [109]

      X. Chen, X. Wang, D. Fang, Fuller. Nanotub. Car. N. 28 (2020) 1048–1058.  doi: 10.1080/1536383x.2020.1794851

    110. [110]

      W. Wei, J. Luo, S. Liu, et al., J. Solid State Chem. 312 (2022) 123160.

    111. [111]

      M. Xu, H. Zhou, Z. Wu, et al., J. Hazard. Mater. 399 (2020) 123103.

    112. [112]

      R. Ma, X. Xu, Y. Zhang, et al., Environ. Sci. Pollut. R. 31 (2024) 8538–8551.  doi: 10.1007/s11356-023-31654-7

    113. [113]

      Y. Yao, H. Yin, Y. Zhang, et al., Chem. Eng. J. 426 (2021) 131801.

    114. [114]

      Y. Cui, X. Chen, C. Pitakrattanawong, et al., Water Reuse 14 (2023) 65–79.

    115. [115]

      Y. Liu, X. Zhang, L. Zhao, Water Cycle 4 (2023) 179–191.

    116. [116]

      X.Z. Ma, X.Y. Hao, X.L. Chen, et al., Spectrosc. Spect. Anal. 36 (2016) 1670–1673.

    117. [117]

      R. Zheng, Z. Xu, Q. Qiu, et al., Environ. Res. 244 (2024) 117849.

    118. [118]

      Y. Luo, L. Zeng, Y. Zhao, et al., J. Water Process. Eng. 47 (2022) 102743.

    119. [119]

      B. Pan, L. Zhou, J. Qin, et al., Chemosphere 307 (2022) 135886.

    120. [120]

      J. Li, Y. Du, E. Zhao, et al., Chem. Eng. J. 461 (2023) 141832.

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    3. [3]

      Lin ZhangJianlong LiMaoyuan HuYao XuXiaoli XiongZhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123

    4. [4]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    5. [5]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    6. [6]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    7. [7]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    8. [8]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    9. [9]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    10. [10]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

    11. [11]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    12. [12]

      Bofeng LiYuxian WangYa LiuZhe HanTiantian XingYumin ZhangChunmao Chen . Design and engineering strategies of porous carbonaceous catalysts toward activation of peroxides for aqueous organic pollutants oxidation. Chinese Chemical Letters, 2025, 36(6): 110374-. doi: 10.1016/j.cclet.2024.110374

    13. [13]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    14. [14]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    15. [15]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    16. [16]

      Hanghang ZhaoWenbo QiXin TanXing XuFengmin SongXianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898

    17. [17]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    18. [18]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    19. [19]

      Yusheng LuChaofeng HuangZhigang LeiMingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583

    20. [20]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return