Site-specific protein labeling: Recent progress
-
* Corresponding authors.
E-mail addresses: shenglu@njtech.edu.cn (S. Lu), chenxq@njtech.edu.cn (X. Chen).
Citation:
Yiming Ma, Yuanbo Wang, Fang Wang, Sheng Lu, Xiaoqiang Chen. Site-specific protein labeling: Recent progress[J]. Chinese Chemical Letters,
;2025, 36(8): 110546.
doi:
10.1016/j.cclet.2024.110546
A.W. Woodham, S.H. Zeigler, E.L. Zeyang, et al., Nat. Methods 17 (2020) 1025–1032.
doi: 10.1038/s41592-020-0934-5
X. Li, H. Yang, Y. Teng, et al., Chin. Chem. Lett. 33 (2022) 4223–4228.
H.C. Gong, Y.H. Zhang, Y. Gao, et al., Chin. Chem. Lett. 34 (2023) 108329.
P. Strop, K. Delaria, D. Foletti, et al., Nat. Biotechnol. 33 (2015) 694–696.
doi: 10.1038/nbt.3274
S. Ha, J.C. Zhu, H. Xiang, et al., Chin. Chem. Lett. 35 (2024) 109192.
P. Agarwal, C.R. Bertozzi, Bioconjug. Chem. 26 (2015) 176–192.
doi: 10.1021/bc5004982
T.Q. Wang, Y.N. Fu, S.J. Sun, et al., Chin. Chem. Lett. 34 (2023) 107508.
Y.X. Chen, G. Triola, H. Waldmann, Acc. Chem. Res. 44 (2011) 762–773.
doi: 10.1021/ar200046h
P.J. Carter, G.A. Lazar, Nat. Rev. Drug. Discov. 17 (2018) 197–223.
doi: 10.1038/nrd.2017.227
A. Beck, L. Goetsch, C. Dumontet, Nat. Rev. Drug. Discov. 16 (2017) 315–337.
doi: 10.1038/nrd.2016.268
R. Roy, S. Hohng, T. Ha, Nat. Methods 5 (2008) 507–516.
doi: 10.1038/nmeth.1208
M.J. Rust, M. Bates, X. Zhuang, Nat. Methods 3 (2006) 793–796.
doi: 10.1038/nmeth929
T.A. Klar, S. Jakobs, M. Dyba, et al., Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 8206–8210.
J.H. Zhang, H.X. Xu, B.S. Wang, et al., Chin. Chem. Lett. 34 (2023) 107871.
Z. Dai, L.Z. Tan, Y.Y. Su, et al., Chin. Chem. Lett. 35 (2024) 109121.
B.A. Griffin, S.R. Adams, R.Y. Tsien, Science 281 (1998) 269–272.
A. Keppler, S. Gendreizig, T. Gronemeyer, et al., Nat. Biotechnol. 21 (2003) 86–89.
S. Leng, Q.L. Qiao, Y. Gao, et al., Chin. Chem. Lett. 10 (2017) 1911–1915.
A. Gautier, A. Juillerat, C. Heinis, et al., Chem. Biol. 15 (2008) 128–136.
G.V. Los, L.P. Encell, M.G. McDougall, et al., ACS Chem. Biol. 3 (2008) 373–382.
doi: 10.1021/cb800025k
S.R. Adams, R.E. Campbell, L.A. Gross, et al., J. Am. Chem. Soc. 124 (2002) 6063–6076.
S.Y. Zheng, W.M. Shao, S. Lu, et al., AIChE J. 68 (2022) e17912.
C. Zhang, P. Dai, A.A. Vinogradov, et al., Angew. Chem. Int. Ed. 57 (2018) 6459–6463.
doi: 10.1002/anie.201800860
C. Zhang, M. Welborn, T. Zhu, et al., Nat. Chem. 8 (2016) 120–128.
doi: 10.1038/nchem.2413
P. Dai, J.K. Williams, C. Zhang, et al., Sci. Rep. 7 (2017) 7954.
R.J. Taylor, M. Aguilar Rangel, M.B. Geeson, et al., J. Am. Chem. Soc. 144 (2022) 13026–13031.
doi: 10.1021/jacs.2c04747
E. Hochuli, H. Döbeli, A. Schacher, J. Chromatogr. A 411 (1987) 177–184.
S.H. Uchinomiya, H. Nonaka, S.H. Fujishima, et al., Chem. Commun. (2009) 5880–5882.
doi: 10.1039/b912025d
A. Guesdon, F. Bazilel, R.M. Buey, et al., Nat. Cell. Biol. 18 (2016) 1102–1108.
doi: 10.1038/ncb3412
K. Gatterdam, E.F. Joest, V. Gatterdam, et al., Angew. Chem. Int. Ed. 57 (2018) 12395–12399.
doi: 10.1002/anie.201802746
V. Glembockyte, R. Wieneke, K. Gatterdam, et al., J. Am. Chem. Soc. 140 (2018) 11006–11012.
doi: 10.1021/jacs.8b04681
M. Cong, S. Tavakolpour, L. Berland, et al., Bioconjug. Chem. 32 (2021) 2397–2406.
doi: 10.1021/acs.bioconjchem.1c00442
H.E. Morgan, Z.L.P. Arnott, T.P. Kaminski, et al., Bioconjug. Chem. 33 (2022) 2341–2347.
doi: 10.1021/acs.bioconjchem.2c00411
T. Tanaka, T. Yamamoto, S. Tsukiji, et al., ChemBioChem 9 (2008) 802–807.
doi: 10.1002/cbic.200700614
C. Zuo, R. Ding, X. Wu, et al., Angew. Chem. Int. Ed. 61 (2022) e202201887.
S.A. McConnell, B.R. Amer, J. Muroski, et al., J. Am. Chem. Soc. 140 (2018) 8420–8423.
doi: 10.1021/jacs.8b05200
R. Yang, Y.H. Wong, G.K.T. Nguyen, et al., J. Am. Chem. Soc. 139 (2017) 5351–5358.
doi: 10.1021/jacs.6b12637
K.S. Harris, T. Durek, Q. Kaas, et al., Nat. Commun. 6 (2015) 10199.
F.B.H. Rehm, T.J. Harmand, K. Yap, et al., J. Am. Chem. Soc. 141 (2019) 17388–17393.
doi: 10.1021/jacs.9b09166
F.B.H. Rehm, T.J. Tyler, K. Yap, et al., J. Am. Chem. Soc. 143 (2021) 19498–19504.
doi: 10.1021/jacs.1c08976
R. Hofmann, G. Akimoto, T.G. Wucherpfennig, et al., Nat. Chem. 12 (2020) 1008–1015.
doi: 10.1038/s41557-020-0528-y
M. Fottner, J. Heimgärtner, M. Gantz, et al., J. Am. Chem. Soc. 144 (2022) 13118–13126.
doi: 10.1021/jacs.2c02191
L. Wang, A. Brock, B. Herberich, et al., Science 292 (2001) 498–500.
doi: 10.1126/science.1060077
I. Nikic, G.E. Girona, J.H. Kang, et al., Angew. Chem. Int. Ed. 55 (2016) 16172–16176.
doi: 10.1002/anie.201608284
A. Dumas, L. Lercher, C.D. Spicer, et al., Chem. Sci. 6 (2015) 50–69.
C.C. Liu, A.V. Mack, M.L. Tsao, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 17688–17693.
doi: 10.1073/pnas.0809543105
J. Wang, J. Xie, P.G. Schultz, J. Am. Chem. Soc. 128 (2006) 8738–8739.
doi: 10.1021/ja062666k
L. Wang, A. Brock, P.G. Schultz, J. Am. Chem. Soc. 124 (2002) 1836–1837.
P. Cheruku, J.H. Huang, H.J. Yen, et al., Chem. Sci. 6 (2015) 1150–1158.
C.S. McKay, M.G. Finn, Chem. Biol. 21 (2014) 1075–1101.
K. Lang, L. Davis, J.W. Chin, Methods Mol. Biol. 1266 (2015) 217–228.
doi: 10.1007/978-1-4939-2272-7_15
A.C. Kneuttinger, K. Straub, P. Bittner, et al., Cell Chem. Biol. 26 (2019) 1501–1514.
J. Zang, Y. Chen, C. Liu, et al., Nat. Struct. Mol. Biol. 30 (2023) 62–71.
doi: 10.1038/s41594-022-00866-9
H. Xiao, W. Xuan, S. Shao, et al., ACS Chem. Biol. 10 (2015) 1599–1603.
doi: 10.1021/cb501055h
T. Peng, H.C. Hang, J. Am. Chem. Soc. 138 (2016) 14423–14433.
doi: 10.1021/jacs.6b08733
Y.X. Li, Y.Y. Su, H.Y. Wang, et al., J. Am. Chem. Soc. (2024) 26884–26896.
doi: 10.1021/jacs.4c07958
D. Bessa-Neto, G. Beliu, A. Kuhlemann, et al., Nat. Commun. 12 (2021) 6715.
A. Arsic, C. Hagemann, N. Stajkovic, et al., Nat. Commun. 13 (2022) 314.
W. Liu, A. Brock, S. Chen, et al., Nat. Methods 4 (2007) 239–244.
doi: 10.1038/nmeth1016
R. Serfling, I. Coin, Methods Enzymol. 580 (2016) 89–107.
R. Serfling, C. Lorenz, M. Ezel, et al., Nucleic Acids Res. 46 (2017) 1–10.
doi: 10.1093/nar/gkx1156
M. Hao, X.Y. Ling, et al., Nat. Chem. Biol. 20 (2024) 721–731.
doi: 10.1038/s41589-023-01533-w
Y. Wang, J. Zhang, B. Han, et al., Nat. Commun. 14 (2023) 974-974.
doi: 10.2991/978-94-6463-034-3_100
W.B. Cao, H.Y. Wang, M. Quan, et al., Chem 9 (2023) 2881–2901.
K. Lang, J.W. Chin, Chem. Rev. 114 (2014) 4764–4806.
doi: 10.1021/cr400355w
Y. Wang, Z. Li, F. Mo, et al., Chem. Soc. Rev. 52 (2023) 1068–1102.
doi: 10.1039/d2cs00142j
T. Tamura, I. Hamachi, J. Am. Chem. Soc. 141 (2019) 2782–2799.
doi: 10.1021/jacs.8b11747
P. Gao, J.Y. Chen, P. Sun, et al., Chin. Chem. Lett. 34 (2023) 108296.
B.Q. Shen, K. Xu, L. Liu, et al., Nat. Biotechnol. 30 (2012) 184–189.
doi: 10.1038/nbt.2108
S.B. Gunnoo, A. Madder, ChemBioChem 17 (2016) 529–553.
doi: 10.1002/cbic.201500667
J.M.J.M. Ravasco, H. Faustino, A. Trindade, et al., Chem. Eur. J. 25 (2019) 43–59.
doi: 10.1002/chem.201803174
V. Laserna, A. Istrate, K. Kafuta, et al., Bioconjug. Chem. 32 (2021) 1570–1575.
doi: 10.1021/acs.bioconjchem.1c00317
N. Forte, M. Livanos, E. Miranda, et al., Bioconjug. Chem. 29 (2018) 486–492.
doi: 10.1021/acs.bioconjchem.7b00795
E.A. Hull, M. Livanos, E. Miranda, et al., Bioconjug. Chem. 25 (2014) 1395–1401.
doi: 10.1021/bc5002467
H.H. Dhanjee, A. Saebi, I. Buslov, et al., J. Am. Chem. Soc. 142 (2020) 9124–9129.
doi: 10.1021/jacs.0c03143
C. Canovas, M. Moreau, C. Bernhard, et al., Angew. Chem. Int. Ed. 57 (2018) 10646–10650.
doi: 10.1002/anie.201806053
A.L. Baumann, S. Schwagerus, K. Broi, J. Am. Chem. Soc. 142 (2020) 9544–9552.
doi: 10.1021/jacs.0c03426
M.A. Kasper, M. Glanz, A. Stengl, et al., Angew. Chem. Int. Ed. 58 (2019) 11625–11630.
doi: 10.1002/anie.201814715
M.A. Kasper, M. Glanz, A. Oder, et al., Chem. Sci. 10 (2019) 6322–6329.
doi: 10.1039/c9sc01345h
C.E. Stieger, L. Franz, F. Korlin, et al., Angew. Chem. Int. Ed. 60 (2021) 15359–15364.
doi: 10.1002/anie.202100683
L. Xu, M. Raabe, M.M.M. Zegota, et al., Org. Biomol. Chem. 18 (2020) 1140–1147.
doi: 10.1039/c9ob02687h
C.C. Ward, J.I. Kleinman, D.K. Nomura, ACS Chem. Biol. 12 (2017) 1478–1483.
doi: 10.1021/acschembio.7b00125
M.J. Matos, B.L. Oliveira, N. Martínez-Sáez, et al., J. Am. Chem. Soc. 140 (2018) 4004–4017.
doi: 10.1021/jacs.7b12874
S.M. Hacker, K.M. Backus, M.R. Lazear, et al., Nat. Chem. 9 (2017) 1181–1190.
doi: 10.1038/nchem.2826
M. Chilamari, L. Purushottam, V. Rai, Chem. Eur. J. 23 (2017) 3819–3823.
doi: 10.1002/chem.201605938
M. Chilamari, N. Kalra, S. Shukla, et al., Chem. Commun. 54 (2018) 7302–7305.
doi: 10.1039/c8cc03311k
G.H. Pham, W. Ou, B. Bursulaya, et al., ChemBioChem 19 (2018) 799–804.
doi: 10.1002/cbic.201700611
S.M. Sarrett, C. Rodriguez, G. Rymarczyk, et al., Bioconjug. Chem. 33 (2022) 1750–1760.
doi: 10.1021/acs.bioconjchem.2c00354
D. Hwang, K. Tsuji, H. Park, et al., Bioconjug. Chem. 30 (2019) 2889–2896.
doi: 10.1021/acs.bioconjchem.9b00609
L.H. Liu, R. Chen, G. Xue, et al., Chin. Chem. Lett. 35 (2024) 108455.
S.R. Adusumalli, D.G. Rawale, K. Thakur, et al., Angew. Chem. Int. Ed. 59 (2020) 10332–10336.
doi: 10.1002/anie.202000062
N.C. Reddy, R. Molla, P.N. Joshi, et al., Nat. Commun. 13 (2022) 6038.
J. Ceballos, E. Grinhagena, G. Sangouard, et al., Angew. Chem. Int. Ed. 60 (2021) 9022–9031.
doi: 10.1002/anie.202014511
M. Todorovic, K.D. Schwab, J. Zeisler, et al., Angew. Chem. Int. Ed. 58 (2019) 14120–14124.
doi: 10.1002/anie.201906514
K. Kubota, P. Dai, B.L. Pentelute, et al., J. Am. Chem. Soc. 140 (2018) 3128–3133.
doi: 10.1021/jacs.8b00172
Y. Zhang, Q. Zhang, C.T.T. Wong, et al., J. Am. Chem. Soc. 141 (2019) 12274–12279.
doi: 10.1021/jacs.9b03623
J. Li, Q.L. Hu, Z. Song, et al., Sci. China: Chem. 65 (2022) 1356–1361.
B. Li, H. Tang, A. Turlik, et al., Angew. Chem. Int. Ed. 60 (2021) 6646–6652.
doi: 10.1002/anie.202016267
E. Jacob, R. Unger, Bioinformatics 23 (2007) 225–230.
C.B. Rosen, M.B. Francis, Nat. Chem. Biol. 13 (2017) 697–705.
doi: 10.1038/nchembio.2416
J. Yu, D. Shen, H. Zhang, et al., Bioconjug. Chem. 29 (2018) 1016–1020.
doi: 10.1021/acs.bioconjchem.8b00086
X. Shi, Y. Jung, L.J. Lin, et al., Nat. Methods 9 (2012) 499–503.
doi: 10.1038/nmeth.1954
M. Djalo, M.J.S.A. Silva, H. Faustino, et al., Chem. Commun. 58 (2022) 7928–7931.
doi: 10.1039/d2cc02204d
N. Inoue, A. Onoda, T. Hayashi, Bioconjug. Chem. 30 (2019) 2427–2434.
doi: 10.1021/acs.bioconjchem.9b00515
H.Y. Shiu, T.C. Chan, C.M. Ho, et al., Chem. Euro. J. 15 (2009) 3839.
doi: 10.1002/chem.200800669
P.E. Dawson, T.W. Muir, I. Clarklewis, et al., Science 266 (1994) 776–779.
doi: 10.1126/science.7973629
H. Ren, F. Xiao, K. Zhan, et al., Angew. Chem. Int. Ed. 48 (2009) 9658–9662.
doi: 10.1002/anie.200903627
A. Bandyopadhyay, S. Cambray, J.M. Gao, Chem. Sci. 7 (2016) 4589–4593.
H. Faustino, M.J.S.A. Silva, L.F. Veiros, et al., Chem. Sci. 7 (2016) 5052–5058.
Y. Wu, C. Li, S. Fan, et al., Bioconjug. Chem. 32 (2021) 2065–2072.
doi: 10.1021/acs.bioconjchem.1c00378
X. Zheng, Z. Li, W. Gao, et al., J. Am. Chem. Soc. 142 (2020) 5097–5103.
doi: 10.1021/jacs.9b11875
A. Istrate, M.B. Geeson, C.D. Navo, et al., J. Am. Chem. Soc. 144 (2022) 10396–10406.
doi: 10.1021/jacs.2c02185
M.H. Mir, S. Parmar, C. Singh, et al., Nat. Commun. 15 (2024) 859.
B. Peschke, S. Bak, Peptides 30 (2009) 689–698.
W. Duan, G. Xu, Methods Mol. Biol. 1574 (2017) 135–144.
doi: 10.1007/978-1-4939-6850-3_10
G. Xu, S.B.Y. Shin, S.R. Jaffrey, ACS Chem. Biol. 6 (2011) 1015–1020.
doi: 10.1021/cb200164h
L. Yi, H. Sun, Y.W. Wu, et al., Angew. Chem. Int. Ed. 49 (2010) 9417–9421.
doi: 10.1002/anie.201003834
B. Wu, H.J. Wijma, L. Song, et al., ACS Catal. 6 (2016) 5405–5414.
doi: 10.1021/acscatal.6b01062
C. Bottecchia, T. Noël, Chem. Eur. J. 25 (2019) 26–42.
doi: 10.1002/chem.201803074
C. Hu, Y. Chen, Tetrahedron Lett. 56 (2015) 884–888.
K. Maeda, H. Saito, K. Osaka, et al., Tetrahedron 71 (2015) 1117–1123.
A. Lipp, G. Lahm, T. Opatz, J. Org. Chem. 81 (2016) 4890–4897.
doi: 10.1021/acs.joc.6b00715
C. Cassani, G. Bergonzini, C.J. Wallentin, Org. Lett. 16 (2014) 4228–4231.
doi: 10.1021/ol5019294
T. Itou, Y. Yoshimi, K. Nishikawa, et al., Chem. Commun. 46 (2010) 6177–6179.
doi: 10.1039/c0cc01464h
S.B. Lang, K.M. O'Nele, J.T. Douglas, et al., Chem. Eur. J. 21 (2015) 18589–18593.
doi: 10.1002/chem.201503644
F. Le Vaillant, M.D. Wodrich, J. Waser, Chem. Sci. 8 (2017) 1790–1800.
S. Bloom, C. Liu, D.K. Kolmel, et al., Nat. Chem. 10 (2018) 205–211.
doi: 10.1038/nchem.2888
D.C. Marcote, R. Street-Jeakings, E. Dauncey, et al., Org. Biomol. Chem. 17 (2019) 1839–1842.
doi: 10.1039/c8ob02702a
M. Garreau, F. Le Vaillant, J. Waser, Angew. Chem. Int. Ed. 58 (2019) 8182–8186.
doi: 10.1002/anie.201901922
L. Zhang, B.M. Floyd, M. Chilamari, et al., ACS Chem. Biol. 16 (2021) 2595–2603.
doi: 10.1021/acschembio.1c00631
T. Tamura, Z. Song, K. Amaike, et al., J. Am. Chem. Soc. 139 (2017) 14181–14191.
doi: 10.1021/jacs.7b07339
T. Tamura, T. Ueda, T. Goto, et al., Nat. Commun. 9 (2018) 1870.
C. Cui, H. Zhang, R. Wang, et al., Angew. Chem. Int. Ed. 56 (2017) 11954–11957.
doi: 10.1002/anie.201706285
D. Yuan, Y. Zhang, K.H. Lim, et al., J. Am. Chem. Soc. 144 (2022) 18494–18503.
doi: 10.1021/jacs.2c07594
T. Lee, J.H. Kim, S.J. Kwon, et al., J. Med. Chem. 65 (2022) 5751–5759.
doi: 10.1021/acs.jmedchem.2c00084
E.V. Witting, S. Hober, S. Kanje, Bioconjug. Chem. 32 (2021) 1515–1524.
C. Yu, J. Tang, A. Loredo, et al., Bioconjug. Chem. 29 (2018) 3522–3526.
doi: 10.1021/acs.bioconjchem.8b00680
S. Kishimoto, Y. Nakashimada, R. Yokota, et al., Bioconjug. Chem. 30 (2019) 698–702.
doi: 10.1021/acs.bioconjchem.8b00865
K. Yamada, N. Shikida, K. Shimbo, et al., Angew. Chem. Int. Ed. 58 (2019) 5592–5597.
doi: 10.1002/anie.201814215
T. Fujii, Y. Matsuda, T. Seki, et al., Bioconjug. Chem. 34 (2023) 728–738.
Y. Zeng, W. Shi, Q. Dong, et al., Angew. Chem. Int. Ed., 61(2022) e202204132.
R.N. Reddi, A. Rogel, E. Resnick, et al., J. Am. Chem. Soc. 143 (2021) 20095–20108.
doi: 10.1021/jacs.1c06167
R.N. Reddi, E. Resnick, A. Rogel, et al., J. Am. Chem. Soc. 143 (2021) 4979–4992.
doi: 10.1021/jacs.0c10644
Y. Tivon, G. Falcone, A. Deiters, Angew. Chem. Int. Ed. 60 (2021) 15899–15904.
doi: 10.1002/anie.202101174
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
Chunyu Yan , Qinglong Qiao , Wei Zhou , Xuelian Zhou , Yonghui Chen , Lu Miao , Zhaochao Xu . FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors. Chinese Chemical Letters, 2025, 36(5): 110258-. doi: 10.1016/j.cclet.2024.110258
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
Lijia Xu , Tong Zhong , Wei Zhao , Bing Yao , Lin Ding , Huangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760
Fukui Shen , Yuqing Zhang , Guoqing Luan , Kaixue Zhang , Zhenzhen Wang , Yunhao Luo , Yuanyuan Hou , Gang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646
Dandan Tang , Ningge Xu , Yuyang Fu , Wei Peng , Jinsheng Wu , Heng Liu , Fabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Min Fu , Ruihan Wang , Wenqiang Liu , Sen Zhou , Chunhong Zhong , Yaohao Li , Pan He , Xin Li , Shiying Shang , Zhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Shaofeng Gong , Zi-Wei Deng , Chao Wu , Wei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936
Mengmeng Yuan , Xiwen Hu , Na Li , Limin Xu , Mengxi Zhu , Xing Pei , Rui Li , Lu Sun , Yupeng Chen , Fei Yu , Huining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251
Jian Li , Jinjin Chen , Qi-Long Hu , Zhen Wang , Xiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126
Wenhao Wang , Siyuan Peng , Zhengwei Huang , Xin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
Jun Xiong , Ke-Ke Chen , Neng-Bin Xie , Wei Chen , Wen-Xuan Shao , Tong-Tong Ji , Si-Yu Yu , Yu-Qi Feng , Bi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953
Yuwan Lu , Xiaodan Zhang , Yuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308