Citation: Yiming Ma, Yuanbo Wang, Fang Wang, Sheng Lu, Xiaoqiang Chen. Site-specific protein labeling: Recent progress[J]. Chinese Chemical Letters, ;2025, 36(8): 110546. doi: 10.1016/j.cclet.2024.110546 shu

Site-specific protein labeling: Recent progress

    * Corresponding authors.
    E-mail addresses: shenglu@njtech.edu.cn (S. Lu), chenxq@njtech.edu.cn (X. Chen).
  • Received Date: 25 July 2024
    Revised Date: 9 October 2024
    Accepted Date: 11 October 2024
    Available Online: 15 October 2024

Figures(7)

  • Site-specific protein labeling plays important roles in drug discovery and illuminating biological processes at the molecular level. However, it is challenging to label proteins with high specificity while not affecting their structures and biochemical activities. Over the last few years, a variety of promising strategies have been devised that address these challenges including those that involve introduction of small-size peptide tags or unnatural amino acids (UAAs), chemical labeling of specific protein residues, and affinity-driven labeling. This review summarizes recent developments made in the area of site-specific protein labeling utilizing genetically encoding- and chemical-based methods, and discusses future issues that need to be addressed by researchers in this field.
  • 加载中
    1. [1]

      A.W. Woodham, S.H. Zeigler, E.L. Zeyang, et al., Nat. Methods 17 (2020) 1025–1032.  doi: 10.1038/s41592-020-0934-5

    2. [2]

      X. Li, H. Yang, Y. Teng, et al., Chin. Chem. Lett. 33 (2022) 4223–4228.

    3. [3]

      H.C. Gong, Y.H. Zhang, Y. Gao, et al., Chin. Chem. Lett. 34 (2023) 108329.

    4. [4]

      P. Strop, K. Delaria, D. Foletti, et al., Nat. Biotechnol. 33 (2015) 694–696.  doi: 10.1038/nbt.3274

    5. [5]

      S. Ha, J.C. Zhu, H. Xiang, et al., Chin. Chem. Lett. 35 (2024) 109192.

    6. [6]

      P. Agarwal, C.R. Bertozzi, Bioconjug. Chem. 26 (2015) 176–192.  doi: 10.1021/bc5004982

    7. [7]

      T.Q. Wang, Y.N. Fu, S.J. Sun, et al., Chin. Chem. Lett. 34 (2023) 107508.

    8. [8]

      Y.X. Chen, G. Triola, H. Waldmann, Acc. Chem. Res. 44 (2011) 762–773.  doi: 10.1021/ar200046h

    9. [9]

      P.J. Carter, G.A. Lazar, Nat. Rev. Drug. Discov. 17 (2018) 197–223.  doi: 10.1038/nrd.2017.227

    10. [10]

      A. Beck, L. Goetsch, C. Dumontet, Nat. Rev. Drug. Discov. 16 (2017) 315–337.  doi: 10.1038/nrd.2016.268

    11. [11]

      R. Roy, S. Hohng, T. Ha, Nat. Methods 5 (2008) 507–516.  doi: 10.1038/nmeth.1208

    12. [12]

      M.J. Rust, M. Bates, X. Zhuang, Nat. Methods 3 (2006) 793–796.  doi: 10.1038/nmeth929

    13. [13]

      T.A. Klar, S. Jakobs, M. Dyba, et al., Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 8206–8210.

    14. [14]

      J.H. Zhang, H.X. Xu, B.S. Wang, et al., Chin. Chem. Lett. 34 (2023) 107871.

    15. [15]

      Z. Dai, L.Z. Tan, Y.Y. Su, et al., Chin. Chem. Lett. 35 (2024) 109121.

    16. [16]

      B.A. Griffin, S.R. Adams, R.Y. Tsien, Science 281 (1998) 269–272.

    17. [17]

      A. Keppler, S. Gendreizig, T. Gronemeyer, et al., Nat. Biotechnol. 21 (2003) 86–89.

    18. [18]

      S. Leng, Q.L. Qiao, Y. Gao, et al., Chin. Chem. Lett. 10 (2017) 1911–1915.

    19. [19]

      A. Gautier, A. Juillerat, C. Heinis, et al., Chem. Biol. 15 (2008) 128–136.

    20. [20]

      G.V. Los, L.P. Encell, M.G. McDougall, et al., ACS Chem. Biol. 3 (2008) 373–382.  doi: 10.1021/cb800025k

    21. [21]

      S.R. Adams, R.E. Campbell, L.A. Gross, et al., J. Am. Chem. Soc. 124 (2002) 6063–6076.

    22. [22]

      S.Y. Zheng, W.M. Shao, S. Lu, et al., AIChE J. 68 (2022) e17912.

    23. [23]

      C. Zhang, P. Dai, A.A. Vinogradov, et al., Angew. Chem. Int. Ed. 57 (2018) 6459–6463.  doi: 10.1002/anie.201800860

    24. [24]

      C. Zhang, M. Welborn, T. Zhu, et al., Nat. Chem. 8 (2016) 120–128.  doi: 10.1038/nchem.2413

    25. [25]

      P. Dai, J.K. Williams, C. Zhang, et al., Sci. Rep. 7 (2017) 7954.

    26. [26]

      R.J. Taylor, M. Aguilar Rangel, M.B. Geeson, et al., J. Am. Chem. Soc. 144 (2022) 13026–13031.  doi: 10.1021/jacs.2c04747

    27. [27]

      E. Hochuli, H. Döbeli, A. Schacher, J. Chromatogr. A 411 (1987) 177–184.

    28. [28]

      S.H. Uchinomiya, H. Nonaka, S.H. Fujishima, et al., Chem. Commun. (2009) 5880–5882.  doi: 10.1039/b912025d

    29. [29]

      A. Guesdon, F. Bazilel, R.M. Buey, et al., Nat. Cell. Biol. 18 (2016) 1102–1108.  doi: 10.1038/ncb3412

    30. [30]

      K. Gatterdam, E.F. Joest, V. Gatterdam, et al., Angew. Chem. Int. Ed. 57 (2018) 12395–12399.  doi: 10.1002/anie.201802746

    31. [31]

      V. Glembockyte, R. Wieneke, K. Gatterdam, et al., J. Am. Chem. Soc. 140 (2018) 11006–11012.  doi: 10.1021/jacs.8b04681

    32. [32]

      M. Cong, S. Tavakolpour, L. Berland, et al., Bioconjug. Chem. 32 (2021) 2397–2406.  doi: 10.1021/acs.bioconjchem.1c00442

    33. [33]

      H.E. Morgan, Z.L.P. Arnott, T.P. Kaminski, et al., Bioconjug. Chem. 33 (2022) 2341–2347.  doi: 10.1021/acs.bioconjchem.2c00411

    34. [34]

      T. Tanaka, T. Yamamoto, S. Tsukiji, et al., ChemBioChem 9 (2008) 802–807.  doi: 10.1002/cbic.200700614

    35. [35]

      C. Zuo, R. Ding, X. Wu, et al., Angew. Chem. Int. Ed. 61 (2022) e202201887.

    36. [36]

      S.A. McConnell, B.R. Amer, J. Muroski, et al., J. Am. Chem. Soc. 140 (2018) 8420–8423.  doi: 10.1021/jacs.8b05200

    37. [37]

      R. Yang, Y.H. Wong, G.K.T. Nguyen, et al., J. Am. Chem. Soc. 139 (2017) 5351–5358.  doi: 10.1021/jacs.6b12637

    38. [38]

      K.S. Harris, T. Durek, Q. Kaas, et al., Nat. Commun. 6 (2015) 10199.

    39. [39]

      F.B.H. Rehm, T.J. Harmand, K. Yap, et al., J. Am. Chem. Soc. 141 (2019) 17388–17393.  doi: 10.1021/jacs.9b09166

    40. [40]

      F.B.H. Rehm, T.J. Tyler, K. Yap, et al., J. Am. Chem. Soc. 143 (2021) 19498–19504.  doi: 10.1021/jacs.1c08976

    41. [41]

      R. Hofmann, G. Akimoto, T.G. Wucherpfennig, et al., Nat. Chem. 12 (2020) 1008–1015.  doi: 10.1038/s41557-020-0528-y

    42. [42]

      M. Fottner, J. Heimgärtner, M. Gantz, et al., J. Am. Chem. Soc. 144 (2022) 13118–13126.  doi: 10.1021/jacs.2c02191

    43. [43]

      L. Wang, A. Brock, B. Herberich, et al., Science 292 (2001) 498–500.  doi: 10.1126/science.1060077

    44. [44]

      I. Nikic, G.E. Girona, J.H. Kang, et al., Angew. Chem. Int. Ed. 55 (2016) 16172–16176.  doi: 10.1002/anie.201608284

    45. [45]

      A. Dumas, L. Lercher, C.D. Spicer, et al., Chem. Sci. 6 (2015) 50–69.

    46. [46]

      C.C. Liu, A.V. Mack, M.L. Tsao, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 17688–17693.  doi: 10.1073/pnas.0809543105

    47. [47]

      J. Wang, J. Xie, P.G. Schultz, J. Am. Chem. Soc. 128 (2006) 8738–8739.  doi: 10.1021/ja062666k

    48. [48]

      L. Wang, A. Brock, P.G. Schultz, J. Am. Chem. Soc. 124 (2002) 1836–1837.

    49. [49]

      P. Cheruku, J.H. Huang, H.J. Yen, et al., Chem. Sci. 6 (2015) 1150–1158.

    50. [50]

      C.S. McKay, M.G. Finn, Chem. Biol. 21 (2014) 1075–1101.

    51. [51]

      K. Lang, L. Davis, J.W. Chin, Methods Mol. Biol. 1266 (2015) 217–228.  doi: 10.1007/978-1-4939-2272-7_15

    52. [52]

      A.C. Kneuttinger, K. Straub, P. Bittner, et al., Cell Chem. Biol. 26 (2019) 1501–1514.

    53. [53]

      J. Zang, Y. Chen, C. Liu, et al., Nat. Struct. Mol. Biol. 30 (2023) 62–71.  doi: 10.1038/s41594-022-00866-9

    54. [54]

      H. Xiao, W. Xuan, S. Shao, et al., ACS Chem. Biol. 10 (2015) 1599–1603.  doi: 10.1021/cb501055h

    55. [55]

      T. Peng, H.C. Hang, J. Am. Chem. Soc. 138 (2016) 14423–14433.  doi: 10.1021/jacs.6b08733

    56. [56]

      Y.X. Li, Y.Y. Su, H.Y. Wang, et al., J. Am. Chem. Soc. (2024) 26884–26896.  doi: 10.1021/jacs.4c07958

    57. [57]

      D. Bessa-Neto, G. Beliu, A. Kuhlemann, et al., Nat. Commun. 12 (2021) 6715.

    58. [58]

      A. Arsic, C. Hagemann, N. Stajkovic, et al., Nat. Commun. 13 (2022) 314.

    59. [59]

      W. Liu, A. Brock, S. Chen, et al., Nat. Methods 4 (2007) 239–244.  doi: 10.1038/nmeth1016

    60. [60]

      R. Serfling, I. Coin, Methods Enzymol. 580 (2016) 89–107.

    61. [61]

      R. Serfling, C. Lorenz, M. Ezel, et al., Nucleic Acids Res. 46 (2017) 1–10.  doi: 10.1093/nar/gkx1156

    62. [62]

      M. Hao, X.Y. Ling, et al., Nat. Chem. Biol. 20 (2024) 721–731.  doi: 10.1038/s41589-023-01533-w

    63. [63]

      Y. Wang, J. Zhang, B. Han, et al., Nat. Commun. 14 (2023) 974-974.  doi: 10.2991/978-94-6463-034-3_100

    64. [64]

      W.B. Cao, H.Y. Wang, M. Quan, et al., Chem 9 (2023) 2881–2901.

    65. [65]

      K. Lang, J.W. Chin, Chem. Rev. 114 (2014) 4764–4806.  doi: 10.1021/cr400355w

    66. [66]

      Y. Wang, Z. Li, F. Mo, et al., Chem. Soc. Rev. 52 (2023) 1068–1102.  doi: 10.1039/d2cs00142j

    67. [67]

      T. Tamura, I. Hamachi, J. Am. Chem. Soc. 141 (2019) 2782–2799.  doi: 10.1021/jacs.8b11747

    68. [68]

      P. Gao, J.Y. Chen, P. Sun, et al., Chin. Chem. Lett. 34 (2023) 108296.

    69. [69]

      B.Q. Shen, K. Xu, L. Liu, et al., Nat. Biotechnol. 30 (2012) 184–189.  doi: 10.1038/nbt.2108

    70. [70]

      S.B. Gunnoo, A. Madder, ChemBioChem 17 (2016) 529–553.  doi: 10.1002/cbic.201500667

    71. [71]

      J.M.J.M. Ravasco, H. Faustino, A. Trindade, et al., Chem. Eur. J. 25 (2019) 43–59.  doi: 10.1002/chem.201803174

    72. [72]

      V. Laserna, A. Istrate, K. Kafuta, et al., Bioconjug. Chem. 32 (2021) 1570–1575.  doi: 10.1021/acs.bioconjchem.1c00317

    73. [73]

      N. Forte, M. Livanos, E. Miranda, et al., Bioconjug. Chem. 29 (2018) 486–492.  doi: 10.1021/acs.bioconjchem.7b00795

    74. [74]

      E.A. Hull, M. Livanos, E. Miranda, et al., Bioconjug. Chem. 25 (2014) 1395–1401.  doi: 10.1021/bc5002467

    75. [75]

      H.H. Dhanjee, A. Saebi, I. Buslov, et al., J. Am. Chem. Soc. 142 (2020) 9124–9129.  doi: 10.1021/jacs.0c03143

    76. [76]

      C. Canovas, M. Moreau, C. Bernhard, et al., Angew. Chem. Int. Ed. 57 (2018) 10646–10650.  doi: 10.1002/anie.201806053

    77. [77]

      A.L. Baumann, S. Schwagerus, K. Broi, J. Am. Chem. Soc. 142 (2020) 9544–9552.  doi: 10.1021/jacs.0c03426

    78. [78]

      M.A. Kasper, M. Glanz, A. Stengl, et al., Angew. Chem. Int. Ed. 58 (2019) 11625–11630.  doi: 10.1002/anie.201814715

    79. [79]

      M.A. Kasper, M. Glanz, A. Oder, et al., Chem. Sci. 10 (2019) 6322–6329.  doi: 10.1039/c9sc01345h

    80. [80]

      C.E. Stieger, L. Franz, F. Korlin, et al., Angew. Chem. Int. Ed. 60 (2021) 15359–15364.  doi: 10.1002/anie.202100683

    81. [81]

      L. Xu, M. Raabe, M.M.M. Zegota, et al., Org. Biomol. Chem. 18 (2020) 1140–1147.  doi: 10.1039/c9ob02687h

    82. [82]

      C.C. Ward, J.I. Kleinman, D.K. Nomura, ACS Chem. Biol. 12 (2017) 1478–1483.  doi: 10.1021/acschembio.7b00125

    83. [83]

      M.J. Matos, B.L. Oliveira, N. Martínez-Sáez, et al., J. Am. Chem. Soc. 140 (2018) 4004–4017.  doi: 10.1021/jacs.7b12874

    84. [84]

      S.M. Hacker, K.M. Backus, M.R. Lazear, et al., Nat. Chem. 9 (2017) 1181–1190.  doi: 10.1038/nchem.2826

    85. [85]

      M. Chilamari, L. Purushottam, V. Rai, Chem. Eur. J. 23 (2017) 3819–3823.  doi: 10.1002/chem.201605938

    86. [86]

      M. Chilamari, N. Kalra, S. Shukla, et al., Chem. Commun. 54 (2018) 7302–7305.  doi: 10.1039/c8cc03311k

    87. [87]

      G.H. Pham, W. Ou, B. Bursulaya, et al., ChemBioChem 19 (2018) 799–804.  doi: 10.1002/cbic.201700611

    88. [88]

      S.M. Sarrett, C. Rodriguez, G. Rymarczyk, et al., Bioconjug. Chem. 33 (2022) 1750–1760.  doi: 10.1021/acs.bioconjchem.2c00354

    89. [89]

      D. Hwang, K. Tsuji, H. Park, et al., Bioconjug. Chem. 30 (2019) 2889–2896.  doi: 10.1021/acs.bioconjchem.9b00609

    90. [90]

      L.H. Liu, R. Chen, G. Xue, et al., Chin. Chem. Lett. 35 (2024) 108455.

    91. [91]

      S.R. Adusumalli, D.G. Rawale, K. Thakur, et al., Angew. Chem. Int. Ed. 59 (2020) 10332–10336.  doi: 10.1002/anie.202000062

    92. [92]

      N.C. Reddy, R. Molla, P.N. Joshi, et al., Nat. Commun. 13 (2022) 6038.

    93. [93]

      J. Ceballos, E. Grinhagena, G. Sangouard, et al., Angew. Chem. Int. Ed. 60 (2021) 9022–9031.  doi: 10.1002/anie.202014511

    94. [94]

      M. Todorovic, K.D. Schwab, J. Zeisler, et al., Angew. Chem. Int. Ed. 58 (2019) 14120–14124.  doi: 10.1002/anie.201906514

    95. [95]

      K. Kubota, P. Dai, B.L. Pentelute, et al., J. Am. Chem. Soc. 140 (2018) 3128–3133.  doi: 10.1021/jacs.8b00172

    96. [96]

      Y. Zhang, Q. Zhang, C.T.T. Wong, et al., J. Am. Chem. Soc. 141 (2019) 12274–12279.  doi: 10.1021/jacs.9b03623

    97. [97]

      J. Li, Q.L. Hu, Z. Song, et al., Sci. China: Chem. 65 (2022) 1356–1361.

    98. [98]

      B. Li, H. Tang, A. Turlik, et al., Angew. Chem. Int. Ed. 60 (2021) 6646–6652.  doi: 10.1002/anie.202016267

    99. [99]

      E. Jacob, R. Unger, Bioinformatics 23 (2007) 225–230.

    100. [100]

      C.B. Rosen, M.B. Francis, Nat. Chem. Biol. 13 (2017) 697–705.  doi: 10.1038/nchembio.2416

    101. [101]

      J. Yu, D. Shen, H. Zhang, et al., Bioconjug. Chem. 29 (2018) 1016–1020.  doi: 10.1021/acs.bioconjchem.8b00086

    102. [102]

      X. Shi, Y. Jung, L.J. Lin, et al., Nat. Methods 9 (2012) 499–503.  doi: 10.1038/nmeth.1954

    103. [103]

      M. Djalo, M.J.S.A. Silva, H. Faustino, et al., Chem. Commun. 58 (2022) 7928–7931.  doi: 10.1039/d2cc02204d

    104. [104]

      N. Inoue, A. Onoda, T. Hayashi, Bioconjug. Chem. 30 (2019) 2427–2434.  doi: 10.1021/acs.bioconjchem.9b00515

    105. [105]

      H.Y. Shiu, T.C. Chan, C.M. Ho, et al., Chem. Euro. J. 15 (2009) 3839.  doi: 10.1002/chem.200800669

    106. [106]

      P.E. Dawson, T.W. Muir, I. Clarklewis, et al., Science 266 (1994) 776–779.  doi: 10.1126/science.7973629

    107. [107]

      H. Ren, F. Xiao, K. Zhan, et al., Angew. Chem. Int. Ed. 48 (2009) 9658–9662.  doi: 10.1002/anie.200903627

    108. [108]

      A. Bandyopadhyay, S. Cambray, J.M. Gao, Chem. Sci. 7 (2016) 4589–4593.

    109. [109]

      H. Faustino, M.J.S.A. Silva, L.F. Veiros, et al., Chem. Sci. 7 (2016) 5052–5058.

    110. [110]

      Y. Wu, C. Li, S. Fan, et al., Bioconjug. Chem. 32 (2021) 2065–2072.  doi: 10.1021/acs.bioconjchem.1c00378

    111. [111]

      X. Zheng, Z. Li, W. Gao, et al., J. Am. Chem. Soc. 142 (2020) 5097–5103.  doi: 10.1021/jacs.9b11875

    112. [112]

      A. Istrate, M.B. Geeson, C.D. Navo, et al., J. Am. Chem. Soc. 144 (2022) 10396–10406.  doi: 10.1021/jacs.2c02185

    113. [113]

      M.H. Mir, S. Parmar, C. Singh, et al., Nat. Commun. 15 (2024) 859.

    114. [114]

      B. Peschke, S. Bak, Peptides 30 (2009) 689–698.

    115. [115]

      W. Duan, G. Xu, Methods Mol. Biol. 1574 (2017) 135–144.  doi: 10.1007/978-1-4939-6850-3_10

    116. [116]

      G. Xu, S.B.Y. Shin, S.R. Jaffrey, ACS Chem. Biol. 6 (2011) 1015–1020.  doi: 10.1021/cb200164h

    117. [117]

      L. Yi, H. Sun, Y.W. Wu, et al., Angew. Chem. Int. Ed. 49 (2010) 9417–9421.  doi: 10.1002/anie.201003834

    118. [118]

      B. Wu, H.J. Wijma, L. Song, et al., ACS Catal. 6 (2016) 5405–5414.  doi: 10.1021/acscatal.6b01062

    119. [119]

      C. Bottecchia, T. Noël, Chem. Eur. J. 25 (2019) 26–42.  doi: 10.1002/chem.201803074

    120. [120]

      C. Hu, Y. Chen, Tetrahedron Lett. 56 (2015) 884–888.

    121. [121]

      K. Maeda, H. Saito, K. Osaka, et al., Tetrahedron 71 (2015) 1117–1123.

    122. [122]

      A. Lipp, G. Lahm, T. Opatz, J. Org. Chem. 81 (2016) 4890–4897.  doi: 10.1021/acs.joc.6b00715

    123. [123]

      C. Cassani, G. Bergonzini, C.J. Wallentin, Org. Lett. 16 (2014) 4228–4231.  doi: 10.1021/ol5019294

    124. [124]

      T. Itou, Y. Yoshimi, K. Nishikawa, et al., Chem. Commun. 46 (2010) 6177–6179.  doi: 10.1039/c0cc01464h

    125. [125]

      S.B. Lang, K.M. O'Nele, J.T. Douglas, et al., Chem. Eur. J. 21 (2015) 18589–18593.  doi: 10.1002/chem.201503644

    126. [126]

      F. Le Vaillant, M.D. Wodrich, J. Waser, Chem. Sci. 8 (2017) 1790–1800.

    127. [127]

      S. Bloom, C. Liu, D.K. Kolmel, et al., Nat. Chem. 10 (2018) 205–211.  doi: 10.1038/nchem.2888

    128. [128]

      D.C. Marcote, R. Street-Jeakings, E. Dauncey, et al., Org. Biomol. Chem. 17 (2019) 1839–1842.  doi: 10.1039/c8ob02702a

    129. [129]

      M. Garreau, F. Le Vaillant, J. Waser, Angew. Chem. Int. Ed. 58 (2019) 8182–8186.  doi: 10.1002/anie.201901922

    130. [130]

      L. Zhang, B.M. Floyd, M. Chilamari, et al., ACS Chem. Biol. 16 (2021) 2595–2603.  doi: 10.1021/acschembio.1c00631

    131. [131]

      T. Tamura, Z. Song, K. Amaike, et al., J. Am. Chem. Soc. 139 (2017) 14181–14191.  doi: 10.1021/jacs.7b07339

    132. [132]

      T. Tamura, T. Ueda, T. Goto, et al., Nat. Commun. 9 (2018) 1870.

    133. [133]

      C. Cui, H. Zhang, R. Wang, et al., Angew. Chem. Int. Ed. 56 (2017) 11954–11957.  doi: 10.1002/anie.201706285

    134. [134]

      D. Yuan, Y. Zhang, K.H. Lim, et al., J. Am. Chem. Soc. 144 (2022) 18494–18503.  doi: 10.1021/jacs.2c07594

    135. [135]

      T. Lee, J.H. Kim, S.J. Kwon, et al., J. Med. Chem. 65 (2022) 5751–5759.  doi: 10.1021/acs.jmedchem.2c00084

    136. [136]

      E.V. Witting, S. Hober, S. Kanje, Bioconjug. Chem. 32 (2021) 1515–1524.

    137. [137]

      C. Yu, J. Tang, A. Loredo, et al., Bioconjug. Chem. 29 (2018) 3522–3526.  doi: 10.1021/acs.bioconjchem.8b00680

    138. [138]

      S. Kishimoto, Y. Nakashimada, R. Yokota, et al., Bioconjug. Chem. 30 (2019) 698–702.  doi: 10.1021/acs.bioconjchem.8b00865

    139. [139]

      K. Yamada, N. Shikida, K. Shimbo, et al., Angew. Chem. Int. Ed. 58 (2019) 5592–5597.  doi: 10.1002/anie.201814215

    140. [140]

      T. Fujii, Y. Matsuda, T. Seki, et al., Bioconjug. Chem. 34 (2023) 728–738.

    141. [141]

      Y. Zeng, W. Shi, Q. Dong, et al., Angew. Chem. Int. Ed., 61(2022) e202204132.

    142. [142]

      R.N. Reddi, A. Rogel, E. Resnick, et al., J. Am. Chem. Soc. 143 (2021) 20095–20108.  doi: 10.1021/jacs.1c06167

    143. [143]

      R.N. Reddi, E. Resnick, A. Rogel, et al., J. Am. Chem. Soc. 143 (2021) 4979–4992.  doi: 10.1021/jacs.0c10644

    144. [144]

      Y. Tivon, G. Falcone, A. Deiters, Angew. Chem. Int. Ed. 60 (2021) 15899–15904.  doi: 10.1002/anie.202101174

  • 加载中
    1. [1]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    2. [2]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    3. [3]

      Chunyu YanQinglong QiaoWei ZhouXuelian ZhouYonghui ChenLu MiaoZhaochao Xu . FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors. Chinese Chemical Letters, 2025, 36(5): 110258-. doi: 10.1016/j.cclet.2024.110258

    4. [4]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    5. [5]

      Lijia XuTong ZhongWei ZhaoBing YaoLin DingHuangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760

    6. [6]

      Fukui ShenYuqing ZhangGuoqing LuanKaixue ZhangZhenzhen WangYunhao LuoYuanyuan HouGang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646

    7. [7]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    8. [8]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    9. [9]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    10. [10]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    11. [11]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    12. [12]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    13. [13]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    14. [14]

      Jian LiJinjin ChenQi-Long HuZhen WangXiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126

    15. [15]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    16. [16]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    17. [17]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    18. [18]

      Yuwan LuXiaodan ZhangYuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return