Citation: Futao Yi, Ying Liu, Yao Chen, Jiahao Zhu, Quanguo He, Chun Yang, Dongge Ma, Jun Liu. Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation[J]. Chinese Chemical Letters, ;2025, 36(8): 110544. doi: 10.1016/j.cclet.2024.110544 shu

Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation

    * Corresponding authors.
    E-mail addresses: yangchunyc@hut.edu.cn (C. Yang), madongge@btbu.edu.cn (D. Ma), junliu@hut.edu.cn (J. Liu).
    1 These authors contributed equally to this work.
  • Received Date: 8 June 2024
    Revised Date: 6 September 2024
    Accepted Date: 10 October 2024
    Available Online: 11 October 2024

Figures(7)

  • A dual S-scheme g-C3N4/Ag3PO4/g-C3N5 heterojunction was prepared by decomposition methods, and it displayed enhanced performance to degrade tetracycline hydrochloride with the ideal stability under different water substrates and ions. Comparing with three single components, as g-C3N4, g-C3N5, and Ag3PO4, the dual S-scheme g-C3N4/Ag3PO4/g-C3N5 heterojunction displayed 4.4-, 3.4-, and 2.5-times enhancements in the tetracycline hydrochloride removal. Based on the dynamics analyses for charge carriers and band structure calculations, two channels of molecular oxygen activation (MOA) between Ag3PO4 and g-C3N4 (and g-C3N5) were confirmed. More importantly, according to this double consumption process of excited electrons, dual S-scheme g-C3N4/Ag3PO4/g-C3N5 could suppress the charge recombination, which was the key point to boosting photocatalytic activity. Moreover, the determination of intermediates also supported the vital role of MOA during these photocatalytic reactions. this report of two reactive sites in MOA that generate reactive oxygen species in a "V" type band structure. The electronic dynamic in the reaction was also testified by several detections, indicating the enhanced charge separation and migration from internal field effect and electron trapping from dual S-scheme mechanism. This work provides a new research direction for the design and mechanism analysis of dual S-scheme photocatalysts
  • 加载中
    1. [1]

      J.J. Sun, L.B. Yang, S.Z. Xiao, et al., Water Res. 217 (2022) 118411.

    2. [2]

      L. Yao, Z.Y. Chen, W.Y. Dou, et al., Water Res. 207 (2021)117803.

    3. [3]

      P. Kumari, N. Bahadur, X.A. Conlan, et al., Water Res. 218 (2022) 118519.

    4. [4]

      M. Geng, H. Gao, B. Wang, et al., Sci. Total Environ. 838 (2022) 156146.

    5. [5]

      L. Xing, A. Li, J. Sun, et al., Sci. Total Environ. 837 (2022) 155824.

    6. [6]

      Z. Wang, Y. Li, J. Wang, et al., Sci. Total Environ. 949 (2022) 175126.

    7. [7]

      J. Yang, J.Q. Long, H.Z. Huang, et al., Colloid. Surface. A 660 (2023) 130846.

    8. [8]

      W.X. Li, Z.Z. Wang, Y. Li, et al., J. Hazard. Mater. 424 (2022) 127595.

    9. [9]

      L. Wei, X.Q. Zhang, J. Wang, et al., Inorg. Chem. Commun. 159 (2024) 111890.

    10. [10]

      X.T. Wang, Z.Z. Wang, Y. Li, et al., Appl. Catal. B: Environ. 319 (2022) 121895.

    11. [11]

      Y. Lin, H.Y. Liu, C. Yang, et al., Appl. Catal. B: Environ. 264 (2020) 118479.

    12. [12]

      X.D. Yang, Y.J. Qin, L. Wei, et al., Inorg. Chem. Commun. 155 (2023) 110996.

    13. [13]

      C. Chen, H. Zeng, M. Yi, et al., Appl. Catal. B: Environ. 252 (2019) 47-54.

    14. [14]

      W. Shi, C. Liu, M. Li, et al., J. Haz. Mater. 389 (2020) 121907.

    15. [15]

      Z. Yang, X. Xia, L. Shao, et al., Chem. Eng. J. 410 (2021) 128454.

    16. [16]

      J. Yang, J. Wang, H.Z. Huang, et al., New J. Chem. 47 (2023) 5759-5772.  doi: 10.1039/d2nj05733f

    17. [17]

      M. Ding, J. Zhou, H. Yang, et al., Chin. Chem. Lett. 31 (2020) 71-76.

    18. [18]

      H. Yin, Y. Cao, T. Fan, et al., Sci. Total Environ. 754 (2021) 141926.

    19. [19]

      C. Yang, X. Liu, J. Liu, et al., Ecotox. Environ. Safe. 242 (2022) 113951.

    20. [20]

      Q. Xu, L. Zhang, B. Cheng, et al., Chem 6 (2020) 1543-1559.

    21. [21]

      J. Fu, Q.L. Xu, J. Low, et al., Appl. Catal. B: Environ. 243 (2019) 556-565.

    22. [22]

      Y. Kim, W. Jo, J. Hazard. Mater. 361 (2019) 64-72.

    23. [23]

      Z. Zhuang, Y. Li, Z. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 496-500.  doi: 10.1002/anie.201708748

    24. [24]

      P. Kumar, E. Vahidzadeh, W. Thakur, et al., J. Am. Chem. Soc. 141 (2019) 5415-5436.  doi: 10.1021/jacs.9b00144

    25. [25]

      A. Kumar, A. Khosla, S. Kumar Sharma, et al., Fuel 333 (2023) 126267.

    26. [26]

      F.T. Yi, J. Liu, G.P. Liang, et al., J. Alloy Comp. 905 (2022) 164064.

    27. [27]

      T. Cai, L. Wang, Y. Liu, et al., Appl. Catal. B: Environ. 239 (2018) 545-554.

    28. [28]

      B. Kim, S. Choi, X. Zhu, et al., J. Am. Chem. Soc. 133 (2011) 19864-19877.  doi: 10.1021/ja207751w

    29. [29]

      S. Li, S. Shi, G. Huang, et al., Appl. Surf. Sci. 455 (2018) 1137-1149.

    30. [30]

      F.W. Huang, Y.X. Wang, X.Y. Dong, et al., Sci. Chin. Chem. 66 (2023) 3290-3296.  doi: 10.1007/s11426-023-1644-x

    31. [31]

      Y. Lin, C. Yang, S. Wu, et al., Adv. Funct. Mater. 30 (2020), 2002918.

    32. [32]

      X. Miao, X. Yue, Z. Ji, et al., Appl. Catal. B: Environ. 227 (2018), 459-469.

    33. [33]

      D. Li, Y. Liu, D. Xu, et al., Ceram. Int. 48 (2022) 2169-2176.

    34. [34]

      Y. Chen, Y.J. Qin, J. Yang, et al., J. Electroanal. Chem. 952 (2024) 117967.

    35. [35]

      M. Shalom, S. Inal, C. Fettkenhauer, et al., J. Am. Chem. Soc. 135 (2013) 7118-7121.  doi: 10.1021/ja402521s

    36. [36]

      F.L. Zhang, X. Li, X.Y. Dong, et al., Chin. J. Catal. 43 (2022) 2395-2404.

    37. [37]

      A. Syafiuddin, Salmiati, M. Salim, et al., J. Chin. Chem. Soc. 64 (2017) 732-756.  doi: 10.1002/jccs.201700067

    38. [38]

      Y. He, L.H. Zhang, B. Teng, et al., Environ. Sci. Technol. 49 (2015) 649-656.  doi: 10.1021/es5046309

    39. [39]

      L. Zhang, J. Zhang, H. Yu, et al., Adv. Mater. 34 (2022) 2107668.

    40. [40]

      Y. Fu, K. Zhang, Y. Zhang, et al., Chem. Eng. J. 412 (2021) 128722.

    41. [41]

      Z. Chen, H. Guo, H. Liu, et al., Chem. Eng. J. 438 (2022) 135471.

    42. [42]

      B. Xia, F. Deng, S. Zhang, et al., J. Hazard. Mater. 392 (2020) 122345.

    43. [43]

      H. Wei, X. Li, F.W. Huang, et al., Chin. Chem. Lett. 34 (2023) 108564.

    44. [44]

      S. Li, M. Cai, Y. Liu, et al., Inorg. Chem. Front. 9 (2022) 2479-2497.  doi: 10.1039/d2qi00317a

    45. [45]

      Y. Yang, Z. Zeng, C. Zhang, et al., Chem. Eng. J. 349 (2018) 808-821.

    46. [46]

      Z. Wang, L. Jiang, K. Wang, et al., J. Hazard. Mater. 410 (2021) 124948.

    47. [47]

      A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7 (2012) 1-13.

    48. [48]

      L. Jiang, X. Yuan, G. Zeng, et al., Appl. Catal. B: Environ. 227 (2018) 376-385.

    49. [49]

      X. Xiao, Y. Gao, L. Zhang, et al., Adv. Mater. 32 (2020) 2003082.

    50. [50]

      L. Jiang, X. Yuan, G. Zeng, et al., ACS Sustain. Chem. Eng. 5 (2017) 5831-5841.  doi: 10.1021/acssuschemeng.7b00559

    51. [51]

      M. Zhang, C. Lai, B. Li, et al., Chem. Eng. J. 422 (2021) 130120.

    52. [52]

      C. Wang, K. Maeda, L. Chang, et al., Carbon N Y 188 (2022) 482-491.  doi: 10.1039/d1nr06729j

    53. [53]

      G. Liu, T. Zhang, T. Wang, et al., Appl. Catal. B: Environ. 296 (2021) 120370.

    54. [54]

      F. Wang, C. Chen, W. Wang, et al., J. Mater. Chem. A 9 (2021) 1678-1691.  doi: 10.1039/d0ta09759d

    55. [55]

      L. Kruckemeier, Z. Liu, B. Krogmeier, et al., Adv. Ener. Mater. 11 (2021) 2102290.

    56. [56]

      M. Pei, Q. Dong, M. Wang, et al., ACS Appl. Mater. Interfaces 14 (2022) 16920-16927.  doi: 10.1021/acsami.2c02250

    57. [57]

      P. Barnes, K. Miettunen, X. Li, et al., Adv. Mater. 25 (2013) 1881-1922.  doi: 10.1002/adma.201201372

    58. [58]

      Z. Xin, Y. Gao, Y. Gao, et al., Adv. Mater. 34 (2022) 2106662.

    59. [59]

      P. Nordlander, C. Oubre, E. Prodan, et al., Nano Lett. 4 (2004) 899-903.

    60. [60]

      F. Yi, J. Ma, C. Lin, et al., Chem. Eng. J. 427 (2022) 132028.

    61. [61]

      V. Strauss, J. Margraf, C. Dolle, et al., J. Am. Chem. Soc. 136 (2014)17308-17316.  doi: 10.1021/ja510183c

  • 加载中
    1. [1]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    2. [2]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    7. [7]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    8. [8]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    10. [10]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    11. [11]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    12. [12]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    13. [13]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    14. [14]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    15. [15]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    16. [16]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    17. [17]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    20. [20]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return