Citation: Congcong Wang, Kai Zhang, Bai Yang. Architecting double-shelled hollow carbon nanocages embedded bimetallic sites as bifunctional oxygen electrocatalyst for zinc-air batteries[J]. Chinese Chemical Letters, ;2025, 36(8): 110538. doi: 10.1016/j.cclet.2024.110538 shu

Architecting double-shelled hollow carbon nanocages embedded bimetallic sites as bifunctional oxygen electrocatalyst for zinc-air batteries

    * Corresponding authors.
    E-mail address: zk@jlu.edu.cn (K. Zhang).
  • Received Date: 26 August 2024
    Revised Date: 9 September 2024
    Accepted Date: 8 October 2024
    Available Online: 10 October 2024

Figures(5)

  • Rational design of complex hollow nanostructures offers a great opportunity to construct various functional nanostructures. A novel in situ disassembly-polymerization-pyrolysis approach was developed to synthesize atomically dispersed Fe single atoms (Fe SAs) and tiny Co nanoparticles (Co NPs) binary sites embedded in double-shelled hollow carbon nanocages (Co NPs/Fe SAs DSCNs) without removing excess templates. The Co NPs/Fe SAs DSCNs displayed excellent bifunctional activity, boosting the realistic rechargeable zinc-air batteries with high efficiency, long-term durability, and reversibility, which is comparable to noble metal catalysts (Pt/C and RuO2). The enhanced catalytic activity should be attributed to as well as the strong interactions between Fe SAs and Co NPs with the nitrogen-doped carbon matrix, the exposure of more active sites, and the high-flux mass transportation. In addition, the confinement effect between the double C–N shells prevented the aggregation and corrosion of metal atoms, thus improving the durability of the Co NPs/Fe SAs DSCNs, further highlighting the structural advantages of carbon nanoreactor. This work provides guidance for further rational design and preparation of complex hollow structure materials with advanced bifunctional air cathodes.
  • 加载中
    1. [1]

      S.S. Shinde, J.Y. Jung, N.K. Wagh, et al., Nat. Energy 6 (2021) 592–604.  doi: 10.1038/s41560-021-00807-8

    2. [2]

      S. Han, X. Hu, J. Wang, et al., Adv. Energy Mater. 8 (2018) 1800955.

    3. [3]

      Y. Xue, Y. Guo, Q. Zhang, et al., Nano Micro Lett. 14 (2022) 162.

    4. [4]

      L. Yan, Y. Xu, P. Chen, et al., Adv. Mater. 32 (2020) 2003313.

    5. [5]

      F. Yang, J. Xie, X. Liu, et al., Small 17 (2020) 2007085.

    6. [6]

      Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060–2086.

    7. [7]

      J. Yi, P. Liang, X. Liu, et al., Energy Environ. Sci. 11 (2018) 3075–3095.  doi: 10.1039/c8ee01991f

    8. [8]

      Y. Li, M. Gong, Y. Liang, et al., Nat. Commun. 4 (2013) 1805.  doi: 10.3892/or.2013.2333

    9. [9]

      Y. -P. Deng, Y. Jiang, R. Liang, et al., Nat. Commun. 11 (2020) 1952.

    10. [10]

      X. Wu, C. Tan, C. He, et al., J. Power Sources 520 (2022) 230891.

    11. [11]

      A. Yu, W. Long, L. Zhu, et al., Chin. Chem. Lett. 34 (2023) 107860.

    12. [12]

      Y. Wu, M. Jing, J. Li, et al., Chin. Chem. Lett. 35 (2024) 109269.

    13. [13]

      H. Wang, L. Cao, Y. Feng, et al., Chin. Chem. Lett. 34 (2023) 107601.

    14. [14]

      C. Lafforgue, F. Maillard, V. Martin, et al., ACS Catal. 9 (2019) 5613–5622.  doi: 10.1021/acscatal.9b00439

    15. [15]

      M. Ming, Y. Zhang, C. He, et al., Small 15 (2019) 1903057.

    16. [16]

      P. Tan, B. Chen, H. Xu, et al., Energy Environ. Sci. 10 (2017) 2056–2080.

    17. [17]

      X. Zheng, P. Cui, Y. Qian, et al., Angew. Chem. Int. Ed. 59 (2020) 14533–14540.  doi: 10.1002/anie.202005241

    18. [18]

      X. Han, X. Wu, C. Zhong, et al., Nano Energy 31 (2017) 541–550.

    19. [19]

      D. He, K. Cheng, T. Peng, et al., J. Mater. Chem. A 1 (2013) 2126–2132.

    20. [20]

      C. Wang, Y. Chen, M. Zhong, et al., J. Mater. Chem. A 9 (2021) 22095–22101.  doi: 10.1039/d1ta05039g

    21. [21]

      L. Jiao, R. Zhang, G. Wan, et al., Nat. Commun. 11 (2020) 2831.

    22. [22]

      Y. Chen, L. Shen, C. Wang, et al., Appl. Catal. B 274 (2020) 119112.

    23. [23]

      Y. Chen, L. Shen, C. Wang, et al., Chem. Eng. J. 430 (2022) 132632.

    24. [24]

      Y. Chen, S. Ji, Y. Wang, et al., Angew. Chem. Int. Ed. 56 (2017) 6937–6941.  doi: 10.1002/anie.201702473

    25. [25]

      Y. Chen, M. Wang, S. Xiang, et al., ACS Sustain. Chem. Eng. 7 (2019) 10912–10919.  doi: 10.1021/acssuschemeng.9b01789

    26. [26]

      X. Gong, J. Zhu, J. Li, et al., Adv. Funct. Mater. 31 (2020) 2008085.

    27. [27]

      K. Elumeeva, M.A. Kazakova, D.M. Morales, et al., ChemSusChem 11 (2018) 1204–1214.  doi: 10.1002/cssc.201702381

    28. [28]

      Y. Qiao, P. Yuan, Y. Hu, et al., Adv. Mater. 30 (2018) 1804504.

    29. [29]

      N.K. Wagh, D.H. Kim, S.H. Kim, et al., ACS Nano 15 (2021) 14683–14696.  doi: 10.1021/acsnano.1c04471

    30. [30]

      P. Li, F. Qiang, X. Tan, et al., Appl. Catal. B 340 (2024) 123231.

    31. [31]

      Y. Lykhach, S.M. Kozlov, T. Skála, et al., Nat. Mater. 15 (2015) 284–288.

    32. [32]

      W. Chen, J. Ji, X. Feng, et al., J. Am. Chem. Soc. 136 (2014) 16736–16739.  doi: 10.1021/ja509778y

    33. [33]

      K. Murata, Y. Mahara, J. Ohyama, et al., Angew. Chem. Int. Ed. 56 (2017) 15993–15997.  doi: 10.1002/anie.201709124

    34. [34]

      H. Wang, J. Lu, Chin. J. Chem. 38 (2020) 1422–1444.  doi: 10.1002/cjoc.202000205

    35. [35]

      H. Chen, K. Shen, Q. Mao, et al., ACS Catal. 8 (2018) 1417–1426.  doi: 10.1021/acscatal.7b03270

    36. [36]

      P. Liu, R. Qin, G. Fu, N. Zheng, J. Am. Chem. Soc. 139 (2017) 2122–2131.  doi: 10.1021/jacs.6b10978

    37. [37]

      L. Yu, H.B. Wu, X.W.D. Lou, Acc. Chem. Res. 50 (2017) 293–301.  doi: 10.1021/acs.accounts.6b00480

    38. [38]

      L. Yu, H. Hu, H.B. Wu, X.W. Lou, Adv. Mater. 29 (2017) 1604563.

    39. [39]

      B.Y. Guan, L. Yu, J. Li, X.W. Lou, Sci. Adv. 2 (2016) e1501554.

    40. [40]

      B.Y. Guan, L. Yu, X.W. Lou, Adv. Mater. 28 (2016) 9596–9601.  doi: 10.1002/adma.201603622

    41. [41]

      K. Huang, Y. Sun, Y. Zhang, et al., Adv. Mater. 31 (2018) 1801430.

    42. [42]

      S. Zhan, X. Chen, B. Xu, et al., Nano Today 47 (2022) 101626.

    43. [43]

      K. Wang, L. Xu, J. Wang, et al., Green Energy Environ. 8 (2023) 1154–1160.

    44. [44]

      X. Chen, N. Yang, Y. Wang, et al., Adv. Mater. 34 (2021) 2107400.

    45. [45]

      X. Chen, S. Liu, N. Yang, et al., EcoMat 5 (2023) e12348.

    46. [46]

      Z. Huang, H. Pan, W. Yang, et al., ACS Nano 12 (2018) 208–216.  doi: 10.1021/acsnano.7b05832

    47. [47]

      J. Zhang, L. Yu, Y. Chen, et al., Adv. Mater. 32 (2020) 1906432.

    48. [48]

      P. Zhang, B.Y. Guan, L. Yu, X.W. Lou, Angew. Chem. Int. Ed. 56 (2017) 7141–7145.  doi: 10.1002/anie.201702649

    49. [49]

      H. Hu, B.Y. Guan, X.W. Lou, Chem 1 (2016) 102–113.

    50. [50]

      Z.S.Z.Y.Y.N.W. Dan, Chem. J. Chin. Univ. 42 (2021) 333–348.

    51. [51]

      X.Y. Yu, L. Yu, L. Shen, et al., Adv. Funct. Mater. 24 (2014) 7440–7446.  doi: 10.1002/adfm.201402560

    52. [52]

      H. Hu, B. Guan, B. Xia, X.W. Lou, J. Am. Chem. Soc. 137 (2015) 5590–5595.  doi: 10.1021/jacs.5b02465

    53. [53]

      X. Chen, P. Li, J. Wang, et al., Nano Res. 15 (2022) 4117–4123.  doi: 10.1007/s12274-021-4063-y

    54. [54]

      L. Ren, K. Sun, Y. Wang, et al., Adv. Mater. 36 (2024) 2310547.

    55. [55]

      L. Li, B. Chen, Z. Zhuang, et al., Chem. Eng. J. 399 (2020) 125647.

    56. [56]

      X. Liu, L. Gong, L. Wang, et al., Nano Lett. 24 (2023) 592–600.

    57. [57]

      G. Peng, J. Zhou, J. Tao, et al., Nano Res. 17 (2023) 3164–3174.

    58. [58]

      J. Cui, Y. Wang, A. Postma, et al., Adv. Funct. Mater. 20 (2010) 1625–1631.  doi: 10.1002/adfm.201000209

    59. [59]

      Z.N.K.S. Park, A.P. Coˆte´, J.Y. Choi, et al., Proceed. Nat. Acad. Sci. 103 (2006) 10186–10191.  doi: 10.1073/pnas.0602439103

    60. [60]

      A.P.R. Banerjee, B. Wang, C. Knobler, et al., Science 319 (2008) 939–943.  doi: 10.1126/science.1152516

    61. [61]

      Y.J. Chen, S.F. Ji, Y.G. Wang, et al., Angew. Chem. Int. Ed. 56 (2017) 6937–6941.  doi: 10.1002/anie.201702473

    62. [62]

      Y. Ye, F. Cai, H. Li, et al.; Nano Energy 38 (2017) 281–289.

    63. [63]

      Z. Wang, X. Jin, C. Zhu, et al., Adv. Mater. 33 (2021) 2104718.

  • 加载中
    1. [1]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    2. [2]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    3. [3]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    4. [4]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    5. [5]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    6. [6]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    7. [7]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    8. [8]

      Xiaoxu DuanJunli XuJiwei LiCongcong DuKai ChenTeng XuYifei SunHaifeng Xiong . Enhancing CO2 reduction efficiency with axial oxygen coordinated Ni-N4 active sites on hierarchical pore N-doped carbon. Chinese Chemical Letters, 2025, 36(7): 110340-. doi: 10.1016/j.cclet.2024.110340

    9. [9]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuRui WenIn situ nanoscale insights into the interfacial degradation of Zn metal anodes. Chinese Chemical Letters, 2025, 36(8): 110308-. doi: 10.1016/j.cclet.2024.110308

    10. [10]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    11. [11]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    12. [12]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    13. [13]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    14. [14]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    15. [15]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    16. [16]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    17. [17]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    18. [18]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    19. [19]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    20. [20]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return