Citation: Le Yang, Hongye Wei, Zhihe Qing, Linlin Wu. AuNP@DNA nanoflares: Preparation and application in bioanalysis and biomedicine[J]. Chinese Chemical Letters, ;2025, 36(8): 110524. doi: 10.1016/j.cclet.2024.110524 shu

AuNP@DNA nanoflares: Preparation and application in bioanalysis and biomedicine

    * Corresponding authors.
    E-mail addresses: qingzhihe@hnu.edu.cn (Z. Qing), linlinliff@163.com (L. Wu).
  • Received Date: 5 August 2024
    Revised Date: 27 September 2024
    Accepted Date: 30 September 2024
    Available Online: 18 October 2024

Figures(10)

  • DNA probes display advantages including flexible design, wide range of targets and high selectivity, but free DNA probes are confined to in vitro detection due to their poor cell penetration and low nuclease resistance. Nanomaterials-loaded DNA probes can effectively solve above limitations and promote them in vivo applications. Gold nanoparticles-based probes have been intensely investigated in the past, and AuNP@DNA nanoflare as one of the most powerful tools for biomedical study has been developed. So far, towards AuNP@DNA nanoflare, significant advances in preparation (e.g., salt-aging, low pH-assisted and freezing-directed linking) and application (e.g., sensing and therapeutic nanoflares) have been achieved since first report. In addition, scientific challenges involved in AuNP@DNA nanoflares have been concerned and some endeavor has been made recently. Here, a historical review is provided for AuNP@DNA nanoflares: methodology in preparation and applications in bioanalysis and biomedicine are delineated, challenges and outlook are also discussed, which are expected to improve the further development of this fertile research area.
  • 加载中
    1. [1]

      C.D. Bain, G.M. Whitesides, Angew. Chem., Int. Ed. 28 (1989) 506-512.

    2. [2]

      G. Kataby, M. Cojocaru, R. Prozorov, A. Gedanken, Langmuir 15 (1999) 1703-1708.

    3. [3]

      D.V. Leff, L. Brandt, J.R. Heath, Langmuir 12 (1996) 4723-4730.

    4. [4]

      S.R. Johnson, S.D. Evans, R. Brydson, Langmuir 14 (1998) 6639-6647.

    5. [5]

      A.K. Boal, T.H. Galow, F. Ilhan, V.M. Rotello, Adv. Funct. Mater. 11 (2001) 461-465.

    6. [6]

      T. Galow, A. Boal, V. Rotello, Adv. Mater. 12 (2000) 576-579.

    7. [7]

      W. Zheng, M.M. Maye, F.L. Leibowitz, C.J. Zhong, Analyst 125 (2000) 17-20.

    8. [8]

      C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382 (1996) 607-609.

    9. [9]

      J.I. Cutler, E. Auyeung, C.A. Mirkin, J. Am. Chem. Soc. 134 (2012) 1376-1391.  doi: 10.1021/ja209351u

    10. [10]

      S.B. Ebrahimi, D. Samanta, C.A. Mirkin, J. Am. Chem. Soc. 142 (2020) 11343-11356.  doi: 10.1021/jacs.0c04978

    11. [11]

      S. Faiad, Q. Laurent, A.L. Prinzen, et al., Angew. Chem., Int. Ed. 62 (2023) e202315768.

    12. [12]

      M.M. Liu, F. Wang, X.L. Zhang, et al., Nat. Protoc. 16 (2020) 383-404.  doi: 10.3390/polym12020383

    13. [13]

      P.T. Tang, J. Zheng, J.R. Tang, et al., Chem. Commun. 53 (2017) 2507-2510.

    14. [14]

      R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277 (1997) 1078-1081.

    15. [15]

      J.J. Storhoff, R. Elghanian, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, J. Am. Chem. Soc. 120 (1998) 1959-1964.

    16. [16]

      Z. Li, E. Cheng, W. Huang, et al., J. Am. Chem. Soc. 133 (2011) 15284-15287.  doi: 10.1021/ja205712a

    17. [17]

      L.F. Wang, J.J. Song, X.F. Wang, et al., Chin. Chem. Lett. 31 (2020) 2520-2524.

    18. [18]

      Y.Y. Kima, Y.B. Bang, D. Lee, M.Y. Kang, Y.K. Song, Chin. Chem. Lett. 31 (2020) 1137-1140.

    19. [19]

      N.N. Wang, L.R. Song, H. Xing, et al., Nanoscale 11 (2019) 8133-8137.  doi: 10.1039/c9nr00880b

    20. [20]

      J. Liu, Y. Lu, Nat. Protoc. 1 (2006) 246-252.  doi: 10.1038/nprot.2006.38

    21. [21]

      R. Jin, G. Wu, Z. Li, C.A. Mirkin, G.C. Schatz, J. Am. Chem. Soc. 125 (2003) 1643-1654.

    22. [22]

      S.Y. Chen, D.W. Yu, W. Zhong, et al., Chem. Commun. 57 (2021) 7786-7789.  doi: 10.1039/d1cc02644e

    23. [23]

      J.W. Liu, Y. Lu, J. Am. Chem. Soc. 126 (2004) 12298-12305.

    24. [24]

      S.I. Stoeva, J.S. Lee, C.S. Thaxton, C.A. Mirkin, Angew. Chem. Int. Ed. 45 (2006) 3303-3306.  doi: 10.1002/anie.200600124

    25. [25]

      S.J. Hurst, A.K.R. Lytton-Jean, C.A. Mirkin, Anal. Chem. 78 (2006) 8313-8318.  doi: 10.1021/ac0613582

    26. [26]

      Y.B. Zu, Z.Q. Gao, Anal. Chem. 81 (2009) 8523-8528.  doi: 10.1021/ac901459v

    27. [27]

      X. Zhang, M.R. Servos, J.W. Liu, J. Am. Chem. Soc. 134 (2012) 9910-9913.  doi: 10.1021/ja303787e

    28. [28]

      J. Zheng, G.Z. Zhu, Y.H. Li, et al., ACS Nano 7 (2013) 6545-6554.  doi: 10.1021/nn402344v

    29. [29]

      X. Zhang, M.R. Servos, J.W. Liu, J. Am. Chem. Soc. 134 (2012) 7266-7269.  doi: 10.1021/ja3014055

    30. [30]

      X. Zhang, M.R. Servos, J.W. Liu, Chem. Commun. 48 (2012) 10114-10116.  doi: 10.1039/c2cc35008d

    31. [31]

      S.Q. Hu, T.T. Yi, Z.C. Huang, et al., Mater. Horiz. 6 (2019) 155-159.  doi: 10.1039/c8mh01126e

    32. [32]

      C.S. Levin, S.W. Bishnoi, N.K. Grady, N. Halas, J. Anal. Chem. 78 (2006) 3277-3281.  doi: 10.1021/ac060041z

    33. [33]

      A.H. Latham, M.E. Williams, Langmuir 22 (2006) 4319-4326.  doi: 10.1021/la053523z

    34. [34]

      Q. Xu, X.H. Lou, L. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 27298-27304.  doi: 10.1021/acsami.6b08350

    35. [35]

      B.W. Liu, J.W. Liu, J. Am. Chem. Soc. 139 (2017) 9471-9474.  doi: 10.1021/jacs.7b04885

    36. [36]

      B.W. Liu, T.Y. Wu, Z.C. Huang, Y.B. Liu, J.W. Liu, Angew. Chem. 131 (2019) 2131-2135.  doi: 10.1002/ange.201814352

    37. [37]

      K. Quan, J.J. Tong, L.F. Chen, et al., Chin. Chem. Lett. 35 (2024) 108894.

    38. [38]

      S.J. Legrue, Cancer Metastasis Rev. 4 (1985) 209-219.

    39. [39]

      Y.Q. Zheng, Y.L. Li, Z.X. Deng, Chem. Commun. 48 (2012) 6160-6162.  doi: 10.1039/c2cc32338a

    40. [40]

      Y. Hao, Y.J. Li, L. Song, Z.X. Deng, J. Am. Chem. Soc. 143 (2021) 3065-3069.  doi: 10.1021/jacs.1c00568

    41. [41]

      M.D. Shin, S. Shukla, Y.H. Chung, et al., Nat. Nanotechnol. 15 (2020) 646-655.  doi: 10.1038/s41565-020-0737-y

    42. [42]

      B. Lee, K. Lee, S. Panda, et al., Nat. Biomed. Eng. 2 (2018) 497-507.  doi: 10.1038/s41551-018-0252-8

    43. [43]

      M.Q. Huang, E.H. Xiong, Y. Wang, et al., Nat. Commun. 13 (2022) 968.

    44. [44]

      Z. Liu, X. Zhou, Y. Miao, et al., Angew. Chem. Int. Ed. 56 (2017) 5812-5816.  doi: 10.1002/anie.201702114

    45. [45]

      J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105 (2005) 1103-1170.  doi: 10.1021/cr0300789

    46. [46]

      X. Dai, Z. L. Song, W. Song, et al., Anal. Chem. 92 (2020) 11469-11475.  doi: 10.1021/acs.analchem.0c02747

    47. [47]

      F. Li, H. Zhang, B. Dever, X.F. Li, X.C. Le, Bioconjug. Chem. 24 (2013) 1790-1797.  doi: 10.1021/bc300687z

    48. [48]

      R.W. Man, C.H. Li, M.W. MacLean, et al., J. Am. Chem. Soc. 140 (2018) 1576-1579.  doi: 10.1021/jacs.7b08516

    49. [49]

      M.J. MacLeod, A.J. Goodman, H.Z. Ye, et al., Nat. Chem. 11 (2019) 57-63.  doi: 10.1038/s41557-018-0159-8

    50. [50]

      B. Hu, R. Cheng, X. Liu, et al., Biomaterials 92 (2016) 81-89.

    51. [51]

      B. Hu, F. Kong, X. Gao, et al., Angew. Chem. Int. Ed. 57 (2018) 5306-5309.  doi: 10.1002/anie.201712921

    52. [52]

      X. Gao, L. Jiang, B. Hu, et al., Anal. Chem. 90 (2018) 4719-4724.  doi: 10.1021/acs.analchem.7b05343

    53. [53]

      X.N. Gao, J. Li, M.M. Luan, et al., Biosens. Bioelectron. 147 (2020) 111755.

    54. [54]

      P. Gao, Y.Y. Chen, W. Pan, N. Li, B. Tang, Anal. Chem. 92 (2020) 9441-9448.  doi: 10.1021/acs.analchem.0c01624

    55. [55]

      P. Gao, B. Liu, W. Pan, N. Li, B. Tang, Anal. Chem. 92 (2020) 8459-8463.  doi: 10.1021/acs.analchem.0c01204

    56. [56]

      Z.H. Qing, G.Y. Luo, S.H. Xing, et al., Angew. Chem. 59 (2020) 14044-14048.  doi: 10.1002/anie.202003964

    57. [57]

      J. Reedijk, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 3611-3616.

    58. [58]

      W. Zhou, J. Ding, J.W. Liu, Chem. Commun. 51 (2015) 12084-12087.

    59. [59]

      B. Liu, J. Liu, Matter 1 (2019) 825-847.

    60. [60]

      H. Pei, F. Li, Y. Wan, et al., J. Am. Chem. Soc. 134 (2012) 11876-11879.  doi: 10.1021/ja304118z

    61. [61]

      D. Zhu, J. Li, L.H. Wang, et al., Chem. Commun. 57 (2021) 3801-3804.  doi: 10.1039/d1cc00628b

    62. [62]

      X. Zhang, B.W. Liu, M.R. Servos, J.W. Liu, Langmuir 29 (2013) 6091-6098.  doi: 10.1021/la400617u

    63. [63]

      G.B. Yao, J. Li, Q. Li, et al., Nat. Mater. 19 (2020) 781-788.  doi: 10.1038/s41563-019-0549-3

    64. [64]

      M.L. Hu, C.Q. Yuan, T. Tian, et al., J. Am. Chem. Soc. 142 (2020) 7506-7513.  doi: 10.1021/jacs.0c00217

    65. [65]

      M.K. Vasher, G. Yamankurt, C.A. Mirkin, J. Am. Chem. Soc. 144 (2022) 3174-3181.  doi: 10.1021/jacs.1c12750

    66. [66]

      B.W. Liu, P. Wu, Z.C. Huang, L.Z. Ma, J.W. Liu, J. Am. Chem. Soc. 140 (2018) 4499-4502.  doi: 10.1021/jacs.8b01510

    67. [67]

      J.W. Liu, Phys. Chem. Chem. Phys. 14 (2012) 10485-10496.  doi: 10.1039/c2cp41186e

    68. [68]

      H.D. Hill, J.E. Millstone, M.J. Banholzer, C.A. Mirkin, ACS Nano 3 (2009) 418-424.  doi: 10.1021/nn800726e

    69. [69]

      X. Zhang, M.R. Servos, J.W. Liu, Langmuir 28 (2012) 3896-3902.  doi: 10.1021/la205036p

    70. [70]

      B. Liu, Z.C. Huang, J.W. Liu, Angew. Chem. Int. Ed. 57 (2018) 9439-9442.  doi: 10.1002/anie.201805532

    71. [71]

      Q.S. Ge, N.N. Wang, J.S. Li, R.H. Yang, Med. Chem. Commun. 8 (2017) 1435-1439.

    72. [72]

      J. Hwang, J.W. Dittmar, J. Kang, et al., Nano Lett. 24 (2024) 7629-7636.  doi: 10.1021/acs.nanolett.4c01392

    73. [73]

      L.M. Demers, C.A. Mirkin, R.C. Mucic, et al., Anal. Chem. 72 (2000) 5535-5541.

    74. [74]

      B.W. Liu, J.W. Liu, Anal. Methods, 9 (2017) 2633-2643.

    75. [75]

      Z.X. D, H. Gao, C. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202317463.

    76. [76]

      L. M. Zanoli, R. D'Agata, G. Spoto, Anal. Bioanal. Chem. 402 (2012) 1759-1771.  doi: 10.1007/s00216-011-5318-3

    77. [77]

      C.Y. Lee, P. Gong, G.M. Harbers, et al., Anal. Chem. 78 (2006) 3316-3325.  doi: 10.1021/ac052137j

    78. [78]

      Y. Liu, T.T. Li, C.X. Ling, et al., Chin. Chem. Lett. 30 (2019) 2359-2362.

    79. [79]

      Y. Liu, T.T. Li, G.J. Yang, et al., Chin. Chem. Lett. 33 (2022) 1913-1916.

    80. [80]

      X.L. Zhang, L. Wang, X.C. Li, X.J. Li, Chin. Chem. Lett. 33 (2022) 3078-3082.

    81. [81]

      P.P. Liang, J. Canoura, H.X. Yu, O. Alkhamis, Y. Xiao, ACS Appl. Mater. Interfaces 10 (2018) 4233-4242.  doi: 10.1021/acsami.7b16914

    82. [82]

      R. Wu, H.P. Peng, J.J. Zhu, L.P. Jiang, J.W. Liu, Front. Chem. 8 (2022) 121.

    83. [83]

      D.S. Seferos, D.A. Giljohann, H.D. Hill, A.E. Prigodich, C.A. Mirkin, J. Am. Chem. Soc. 129 (2007) 15477-15479.  doi: 10.1021/ja0776529

    84. [84]

      W.E. Briley, M.H. Bondy, P.S. Randeria, T.J. Dupper, C.A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 9591-9595.  doi: 10.1073/pnas.1510581112

    85. [85]

      T.T. Zhao, F.Q. Dong, X.L. Hu, et al., Nanoscale 14 (2022) 1733-1741.  doi: 10.1039/d1nr05418j

    86. [86]

      M. Lin, X. Yi, F. Huang, et al., Anal. Chem. 91 (2019) 2021-2027.  doi: 10.1021/acs.analchem.8b04434

    87. [87]

      J. Li, S.J. Cai, B. Zhou, et al., Chem. Commun. 56 (2020) 6126-6129.  doi: 10.1039/d0cc02395g

    88. [88]

      F. Gao, Y.R. Chu, Y.J. Ai, et al., Chin. Chem. Lett. 32 (2021) 2192-2196.

    89. [89]

      J. Duan, Z.Y. Guo, Chin. Chem. Lett. 23 (2012) 225-228.

    90. [90]

      Z.Y. Zhang, A. Runa, J. Wu, et al., Chin. Chem. Lett. 30 (2019) 779-782.

    91. [91]

      H. Shi, Y.X. Wang, J. Zheng, et al., ACS Nano 13 (2019) 12840-12850.  doi: 10.1021/acsnano.9b05082

    92. [92]

      K. Jiao, Q.L. Yan, L.J. Guo, et al., Angew. Chem. Int. Ed. 60 (2021) 14438-14445.  doi: 10.1002/anie.202017039

    93. [93]

      J.L. Zhang, L.W. Lu, Z.L. Song, et al., Anal. Chem. 93 (2021) 7879-7888.  doi: 10.1021/acs.analchem.1c00391

    94. [94]

      S.Y. Luo, X.D. Meng, L.P. Xu, X.J. Zhang, Anal. Chem. 96 (2024) 2217-2226.  doi: 10.1021/acs.analchem.3c05287

    95. [95]

      A.E. Prigodich, P.S. Randeria, W.E. Briley, et al., Anal. Chem. 84 (2012) 2062-2066.  doi: 10.1021/ac202648w

    96. [96]

      N. Li, C.Y. Chang, W. Pan, B. Tang, Angew. Chem. Int. Ed. 51 (2012) 7426-7430.  doi: 10.1002/anie.201203767

    97. [97]

      J. Li, J. Huang, X.H. Yang, et al., Nanotheranostics 2 (2018) 96-105.

    98. [98]

      Y.J. Yang, J. Huang, X.H. Yang, et al., J. Am. Chem. Soc. 137 (2015) 8340-8343.  doi: 10.1021/jacs.5b04007

    99. [99]

      L. Liu, N. Li, Z.M. Huang, et al., Anal. Chem. 92 (2020) 10925-10929.

    100. [100]

      J. Shi, M. Zhou, A.H. Gong, et al., Anal. Chem. 88 (2016) 1979-1983.  doi: 10.1021/acs.analchem.5b03689

    101. [101]

      A. Lyons, V. Zickus, R. Álvarez-Mendoza, et al., Nat. Commun. 14 (2023) 8005.

    102. [102]

      L. Sistemich, P. Galonska, J. Stegemann, J. Ackermann, S. Kruss, Angew. Chem. Int. Ed. 62 (2023) e202300682.

    103. [103]

      M. Mathieu, L. Martin-Jaular, G. Lavieu, C. Thery, Nat. Cell Biol. 21 (2019) 9-17.  doi: 10.1038/s41556-018-0250-9

    104. [104]

      R. Xu, A. Rai, M. Chen, et al., Nat. Rev. Clin. Oncol. 15 (2018) 617-638.  doi: 10.1038/s41571-018-0036-9

    105. [105]

      B.N. Hannafon, Y.D. Trigoso, C.L. Calloway, et al., Breast Cancer Res. 18 (2016) 90-104.

    106. [106]

      W. Shen, K. Guo, G.B. Adkins, et al., Angew. Chem., Int. Ed. 57 (2018) 15675-15680.  doi: 10.1002/anie.201806901

    107. [107]

      L.Y. Zhai, M.X. Li, W.L. Pan, et al., ACS Appl. Mater. Interfaces 10 (2018) 39478-39486.  doi: 10.1021/acsami.8b12725

    108. [108]

      L.P. Lim, N.C. Lau, E.G. Weinstein, et al., Genes Dev. 17 (2003) 991-1008.  doi: 10.1101/gad.1074403

    109. [109]

      D.P. Bartel, Cell 116 (2004) 281-297.

    110. [110]

      Z.H. Qing, J.Y. Xu, J. Zheng, et al., Angew. Chem. Int. Ed. 58 (2019) 11574-11585.  doi: 10.1002/anie.201812449

    111. [111]

      H.Y. Peng, A.M. Newbigging, M.S. Reid, et al., Anal. Chem. 92 (2020) 292-308.  doi: 10.1021/acs.analchem.9b04752

    112. [112]

      K.W. Ren, R. Wu, A.K. Mudiyanselage, et al., J. Am. Chem. Soc. 142 (2020) 2968-2974.  doi: 10.1021/jacs.9b11748

    113. [113]

      Z.H. Qing, J.L. Hu, J.Y. Xu, et al., Chem. Sci. 11 (2020) 1985-1990.  doi: 10.1039/c9sc04916a

    114. [114]

      J. Li, J.L. Wang, S.Y. Liu, et al., Angew. Chem. Int. Ed. 58 (2020) 20104-20111.  doi: 10.1002/anie.202008245

    115. [115]

      X. He, T. Zeng, Z. Li, G. Wang, N. Ma, Angew. Chem. 128 (2016) 3125-3128.  doi: 10.1002/ange.201509726

    116. [116]

      C.P. Liang, P.Q. Ma, H. Liu, et al., Angew. Chem. Int. Ed. 56 (2017) 9077-9081.  doi: 10.1002/anie.201704147

    117. [117]

      J.X. Zhao, C. Liu, Y.K. Li, et al., J. Am. Chem. Soc. 142 (2020) 4996-5001.  doi: 10.1021/jacs.9b13960

    118. [118]

      Y.J. Zhang, S. Yan, Z.X. Chen, et al., Chinese J. Chem. 40 (2022) 693-698.

    119. [119]

      X.J. Yang, K. Zhang, T.T. Zhang, J.J. Xu, H.Y. Chen, Anal. Chem. 89 (2017) 4216-4222.  doi: 10.1021/acs.analchem.7b00267

    120. [120]

      L. He, R.R. Huang, P.F. Xiao, et al., Chin. Chem. Lett. 32 (2021) 1593-1602.

    121. [121]

      X.W. Liu, M. Liu, J.J. Chen, Z.H. Li, Q. Yuan, Chin. Chem. Lett. 29 (2018) 1321-1332.

    122. [122]

      C. Ye, M.Q. Wang, J.H. Min, et al., Nat. Nanotechnol. 19 (2024) 330-337.  doi: 10.1038/s41565-023-01513-0

    123. [123]

      N.K. Singh, Y.X. Wang, C. Wen, et al., Nat. Biotechnol. 42 (2024) 1224–1231  doi: 10.1038/s41587-023-01973-8

    124. [124]

      X.H. Wen, Z.X. Huang, X.H. Yang, et al., Proc. Natl. Acad. Sci. U. S. A. 121 (2024) e2321116121.

    125. [125]

      D. Zheng, D.S. Seferos, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Nano Lett. 9 (2009) 3258-3261.  doi: 10.1021/nl901517b

    126. [126]

      F. Jin, J. Zheng, C.H. Liu, et al., Analyst, 139 (2014) 3714-3717.

    127. [127]

      Y.J. Yang, J. Huang, X.H. Yang, et al., Chem. Commun. 52 (2016) 11386-11389.

    128. [128]

      Y. Zhang, G.H. Qi, B. Wang, D.D. Wang, Y. Do. Jin, Anal. Chem. 92 (2020) 3882-3887.  doi: 10.1021/acs.analchem.9b05366

    129. [129]

      X.Q. Tao, Z.Y. Liao, Y.Q. Zhang, et al., Chin. Chem. Lett. 32 (2021) 791-795.

    130. [130]

      Y.Q. Zhang, Y. Liu, Y. Yang, et al., Chin. Chem. Lett. 34 (2023) 108102.

    131. [131]

      M. Sun, S.W. Liu, T. Song, et al., J. Am. Chem. Soc. 143 (2021) 21541-21548.  doi: 10.1021/jacs.1c08226

    132. [132]

      Q. Niu, X. Qu, S.Y. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202312581.

    133. [133]

      Y.L. Lei, C.C. Li, X.Y. J, et al., Angew. Chem. Int. Ed. (2024) 202402123.  doi: 10.1002/anie.202402123

    134. [134]

      L. Yang, Z.H. Qing, C.H. Liu, et al., Anal. Chem. 88 (2016) 9285-9292.  doi: 10.1021/acs.analchem.6b02667

    135. [135]

      J. Huang, L. Ying, X.H. Yang, et al., Anal. Chem. 87 (2015) 8724-8731.  doi: 10.1021/acs.analchem.5b01527

    136. [136]

      F. Chen, Q.Q. Lu, L.N. Huang, et al., Angew. Chem. Int. Ed. 60 (2021) 5453-5458.  doi: 10.1002/anie.202013302

    137. [137]

      J.P. May, R. Ting, L. Lermer, et al., J. Am. Chem. Soc. 126 (2004) 4145-4156.

    138. [138]

      Y.Y. Shen, Z. Zhang, R.Y. Liang, T.B. Wu, Chin. Chem. Lett. 35 (2024) 109638.

    139. [139]

      N. Wang, Y.J. Jiang, K.H. Nie, et al., Chin. Chem. Lett. 34 (2023) 107906.

    140. [140]

      J.Y. Zhan, F. Shi, J. Li, et al., Chin. Chem. Lett. 34 (2023) 108791.

    141. [141]

      X. Jin, Q. Wang, J.Z. Pan, et al., Chin. Chem. Lett. 34 (2023) 108200.

    142. [142]

      X.J. Shuai, Y. Zhang, J. Zhai, et al., Anal. Chem. 95 (2023) 6681-6689.  doi: 10.1021/acs.analchem.3c00293

    143. [143]

      Y.J. Wang, K. Nguyen, R.C. Spitale, J.C. Chaput, Nat. Chem. 13 (2021) 319-326.

    144. [144]

      Y.Q. Hu, Z. Zhang, W. Zhang, et al., Chin. Chem. Lett. 33 (2022) 3026-3030.

    145. [145]

      F.Y. Lin, Y.X. Cheng, M. Li, et al., Anal. Lett. 57 (2024) 2352–2363.  doi: 10.1080/00032719.2023.2294135

    146. [146]

      D.Y. Yi, H.Z. Zhao, J. Zhao, L.L. Li, J. Am. Chem. Soc. 145 (2023) 1678-1685.  doi: 10.1021/jacs.2c11081

    147. [147]

      L.P. Dong, J.S. Ding, L.M. Zhu, et al., Chin. Chem. Lett. 34 (2023) 108192.

    148. [148]

      J. Wei, H.M. Wang, Q. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 5965-5971.  doi: 10.1002/anie.201911712

    149. [149]

      P.W. Wu, K. Hwang, T. Lan, Y. Lu, J. Am. Chem. Soc. 135 (2013) 5254-5257.  doi: 10.1021/ja400150v

    150. [150]

      D. Zhu, H. Pei, J. Chao, et al., Nanoscale, 7 (2015) 18671-18676.

    151. [151]

      L. Li, J. Feng, Y.Y. Fan, B. Tang, Anal. Chem. 87 (2015) 4829-4835.  doi: 10.1021/acs.analchem.5b00204

    152. [152]

      C. Yang, X. Yin, S.Y. Huan, et al., Anal. Chem. 90 (2018) 3118-3123.  doi: 10.1021/acs.analchem.7b04171

    153. [153]

      H.Y. Peng, X.F. Li, H.Q. Zhang, X.C. Le, Nat. Commun. 8 (2017) 14378.

    154. [154]

      Y.S. Gao, S.B. Zhang, C.W. Wu, et al., ACS Nano 15 (2021) 19211-19224.  doi: 10.1021/acsnano.1c04260

    155. [155]

      Y.A. Wu, J. Huang, X.H. Yang, et al., Anal. Chem. 89 (2017) 8377-8383.  doi: 10.1021/acs.analchem.7b01632

    156. [156]

      W.J. Ma, Y.T. Yang, J.W. Zhu, et al., Adv. Mater. 34 (2022) 2109609.

    157. [157]

      J.A. Kretzmann, A. Liedl, A. Monferrer, et al., Nat. Commun. 14 (2023) 1017.

    158. [158]

      Y.W. Hu, S.J. Gao, H.F. Lu, J.Y. Ying, J. Am. Chem. Soc. 144 (2022) 5461-5470.  doi: 10.1021/jacs.1c13426

    159. [159]

      S. Zhang, N. Kong, Z.Z. Wang, et al., Chem. Soc. Rev. 53 (2024) 3656-3686.  doi: 10.1039/d3cs00894k

    160. [160]

      Y.J. Hang, A.Y. Wang, N.Q. Wu, Chem. Soc. Rev. 53 (2024) 2932-2971.  doi: 10.1039/d3cs00793f

    161. [161]

      X.Q. Tang, S. Zhao, J. Luo, et al., Small 20 (2024) 2310732.

    162. [162]

      T.C. Pham, V.N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 121 (2021) 13454-13619.  doi: 10.1021/acs.chemrev.1c00381

    163. [163]

      B. Liu, R. Ma, J. Zhao, Y.L. Zhao, L.L. Li, Sci. China Chem. 63 (2020) 1490-1497.  doi: 10.1007/s11426-020-9764-9

    164. [164]

      S. Yu, Y. Zhou, Y. Sun, et al., Angew. Chem. Int. Ed. 60 (2021) 5948-5958.  doi: 10.1002/anie.202012801

    165. [165]

      K. Quan, X.Y. Li, J.Q. Deng, et al., Angew. Chem. Int. Ed. 63 (2024) e202402881.

    166. [166]

      V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, Lasers Surg. Med. 37 (2005) 219-226.  doi: 10.1002/lsm.20223

    167. [167]

      J. A. Webb, R. Bardhan, Nanoscale, 6 (2014) 2502-2530.  doi: 10.1039/c3nr05112a

    168. [168]

      B. Chen, L. Mei, R.R. Fan, et al., Chin. Chem. Lett. 32 (2021) 1775-1779.

    169. [169]

      X.J. Cheng, R. Sun, L. Yin, et al., Adv. Mater. 29 (2017) 1604894.

    170. [170]

      J. Nam, N. Won, H. Jin, H. Chung, S. Kim, J. Am. Chem. Soc. 131 (2009) 13639-13645.  doi: 10.1021/ja902062j

    171. [171]

      H. Park, J. Kim, S. Jung, W.J. Kim, Adv. Funct. Mater. 28 (2018) 1705416.

    172. [172]

      X.D. Wang, T.F. Yang, Z. Yu, et al., Adv. Mater. 34 (2022) 2110219.

    173. [173]

      N. Yan, X.J. Wang, L. Lin, et al., Adv. Funct. Mater. 28 (2018) 1800490.

    174. [174]

      R. Yan, J. Chen, J.H. Wang, et al., Small 14 (2018) 1802745.

    175. [175]

      G. Yamankurta, R.J. Stawicki, D.M. Posadas, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 1312-1320.

    176. [176]

      A.E. Prigodich, D.S. Seferos, M.D. Massich, et al., ACS Nano 3 (2009) 2147-2152.  doi: 10.1021/nn9003814

    177. [177]

      C.C. Bao, J. Conde, J. Curtin, et al., Sci. Rep. 5 (2015) 12297.

    178. [178]

      S.A. Jensen, E.S. Day, C.H. Ko, et al., Sci. Transl. Med. 5 (2013) 209ra152.

    179. [179]

      P. Kumthekar, C.H. Ko, T. Paunesku, et al., Sci. Transl. Med. 13 (2021) eabb3945.

    180. [180]

      K. Yehl, J.P. Joshi, B.L. Greene, et al., ACS Nano 6 (2012) 9150-9157.  doi: 10.1021/nn3034265

    181. [181]

      I. Somasuntharam, K. Yehl, S.L. Carroll, et al., Biomaterials 83 (2016) 12-22.

    182. [182]

      S.D. Huo, N.Q. Gong, Y. Jiang, et al., Sci. Adv. 5 (2019) eaaw6264.

    183. [183]

      P. Guo, J. Huang, B. Zhu, et al., Sci. Adv. 9 (2023) eabq7866.

    184. [184]

      V. Bagalkot, O.C. Farokhzad, R. Langer, S. Jon, Angew. Chem. Int. Ed. 45 (2006) 8149-8152.  doi: 10.1002/anie.200602251

    185. [185]

      L.Q. Zhang, S. Wang, Z.Y. Yang, et al., Angew. Chem. Int. Ed. 59 (2020) 663-668.  doi: 10.1002/anie.201909691

    186. [186]

      M.E. Kyriazi, D. Giust, A.H. El-Sagheer, et al., ACS Nano 12 (2018) 3333-3340.  doi: 10.1021/acsnano.7b08620

    187. [187]

      H. Li, X. Zhou, D.B. Yao, H.J. Liang, Chem. Commun. 54 (2018) 3520-3523.  doi: 10.1039/c8cc00440d

    188. [188]

      G.Y. Sun, Y.C. Du, Y.X. Cui, et al., ACS Appl. Mater. Interfaces 11 (2019) 14684-14692.  doi: 10.1021/acsami.9b05358

    189. [189]

      Y. Ma, Z.H. Wang, M. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 3304-3308.  doi: 10.1002/anie.201509182

    190. [190]

      Y.J. Yang, Y. He, Z.W. Deng, et al., Anal. Chem. 92 (2020) 12371-12378.  doi: 10.1021/acs.analchem.0c02099

    191. [191]

      C.H.J. Choi, L.L. Hao, S.P. Narayan, E. Auyeung, C.A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 7625-7630.  doi: 10.1073/pnas.1305804110

    192. [192]

      W.L. Zhang, B. Meckes, C.A. Mirkin, ACS Cent. Sci. 5 (2019) 1983-1990.  doi: 10.1021/acscentsci.9b01105

    193. [193]

      Y.P. Jia, B.Y. Ma, X.W. Wei, Z.Y. Qian, Chin. Chem. Lett. 28 (2017) 691-702.

    194. [194]

      R. Cai, J. Ren, M. Guo, et al., Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2200363119.

    195. [195]

      E. Blanco, H. Shen, M. Ferrari, Nat. Biotechnol. 33 (2015) 941-951.  doi: 10.1038/nbt.3330

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    3. [3]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    4. [4]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    7. [7]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

    10. [10]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    16. [16]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    17. [17]

      Xiaolong LiChangjiang LiChaopeng ShiJiarun WangBei YanXianjin XiaoTongbo Wu . CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects. Chinese Chemical Letters, 2025, 36(7): 110507-. doi: 10.1016/j.cclet.2024.110507

    18. [18]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    19. [19]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return