Citation: Runsheng Xu, Haotian Wu, Daoyuan Zu, Kui Yang, Xiangtong Kong, Jinxing Ma. Porous cathode enables continuous flow anodic oxidation for water purification: Performance and mechanisms[J]. Chinese Chemical Letters, ;2025, 36(8): 110517. doi: 10.1016/j.cclet.2024.110517 shu

Porous cathode enables continuous flow anodic oxidation for water purification: Performance and mechanisms

    * Corresponding author.
    E-mail addresses: zudaoyuan@126.com (D. Zu), jinxing.ma@gdut.edu.cn (J. Ma).
  • Received Date: 1 May 2024
    Revised Date: 20 August 2024
    Accepted Date: 29 September 2024
    Available Online: 30 September 2024

Figures(5)

  • Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption. However, traditional setup needs an external unit for flow anode material separation and recovery, which inevitably increases the capital cost and hinders its continuous operation. Herein, a specific porous cathode is introduced to achieve continuous water purification with high contaminant removal in a flow anodic oxidation system. The effluent concentration of carbamazepine (CBZ), a common and model contaminant widely detected in natural water environment, was reduced by 99%. The linear sweep voltammetry (LSV) and quenching tests demonstrated that HO was the dominant reactive species. While the removal of contaminants was inhibited in practical surface water, largely related to the quenching by dissolved organic matter and bicarbonate, the flow anodic oxidation process was competent in alleviating the ecotoxicity following oxidation. Our study constructs a modular device for cost-effective continuous water purification and provides insight into the mechanisms of flow andic oxidation.
  • 加载中
    1. [1]

      V.K. Parida, D. Saidulu, A. Majumder, et al., J. Environ. Chem. Eng. 9 (2021) 105966.

    2. [2]

      J. Wang, S. Wang, J. Environ. Manag. 182 (2016) 620–640.

    3. [3]

      O. Golovko, S. Örn, M. Sörengård, et al., Sci. Total Environ. 754 (2021) 142122.

    4. [4]

      K. Fent, A.A. Weston, D. Caminada, Aquat. Toxicol. 76 (2006) 122–159.

    5. [5]

      T. Wang, J. He, J. Lu, et al., Chin. Chem. Lett. 33 (2022) 3585–3593.

    6. [6]

      X. Chen, L. Lei, S. Liu, et al., Sci. Total Environ. 792 (2021) 148352.

    7. [7]

      D. Zu, Y. Lai, Y. Wang, et al., Chem. Eng. J. 487 (2024) 150503.

    8. [8]

      M. Panizza, G. Cerisola, Chem. Rev. 109 (2009) 6541–6569.  doi: 10.1021/cr9001319

    9. [9]

      B.P. Chaplin, Environ. Sci. Process. Impacts 16 (2014) 1182–1203.

    10. [10]

      J. Zhang, Y. Zhou, B. Yao, J. Yang, D. Zhi, J. Hazard. Mater. 418 (2021) 126313.

    11. [11]

      C.A. Martinez-Huitle, S. Ferro, Chem. Soc. Rev. 35 (2006) 1324–1340.

    12. [12]

      J.D. García-Espinoza, P. Mijaylova-Nacheva, M. Avilés-Flores, Chemosphere 192 (2018) 142–151.

    13. [13]

      L. Jin, M. Liu, S. You, H. Zhao, Y. Liu, Appl. Catal. B 352 (2024) 124044.

    14. [14]

      B.P. Chaplin, Acc. Chem. Res. 52 (2019) 596–604.  doi: 10.1021/acs.accounts.8b00611

    15. [15]

      C. Trellu, B.P. Chaplin, C. Coetsier, et al., Chemosphere 208 (2018) 159–175.

    16. [16]

      C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Chem. Rev. 115 (2015) 13362–13407.  doi: 10.1021/acs.chemrev.5b00361

    17. [17]

      C.A. Martínez-Huitle, M. Panizza, Curr. Opin. Electrochem. 11 (2018) 62–71.

    18. [18]

      Y. Jiang, H. Zhao, J. Liang, et. al., Electrochem. Commun. 123 (2021) 106912.

    19. [19]

      J. Xie, C. Zhang, T.D. Waite, Water Res. 217 (2022) 118425.

    20. [20]

      Y. Liu, Y. Zheng, Y. Ren, et al., Environ. Sci. Technol. 58 (2024) 7228–7236.  doi: 10.1021/acs.est.4c01464

    21. [21]

      C.A. Martínez-Huitle, M.A. Quiroz, C. Comninellis, S. Ferro, A.D. Battisti, Electrochim. Acta 50 (2004) 949–956.

    22. [22]

      A. Kapałka, G. Fóti, C. Comninellis, Electrochim. Acta 54 (2009) 2018–2023.

    23. [23]

      C.I. Brinzila, M.J. Pacheco, L. Ciríaco, R.C. Ciobanu, A. Lopes, Chem. Eng. J. 209 (2012) 54–61.

    24. [24]

      H. Song, L. Yan, J. Jiang, et al., Water Res. 128 (2018) 393–401.  doi: 10.12799/jkachn.2018.29.4.393

    25. [25]

      X. Meng, Z. Chen, C. Wang, et al., Environ. Sci. Technol. 53 (2019) 13784–13793.  doi: 10.1021/acs.est.9b05488

    26. [26]

      S. Rathinavelu, S.N. Gummadi, I.M. Nambi, J. Water Process Eng. 53 (2023) 103859.

    27. [27]

      J. Xie, J. Ma, S. Zhao, T.D. Waite, Water Res. 200 (2021) 117259.

    28. [28]

      S.O. Ganiyu, N. Oturan, S. Raffy, et al., Water Res. 106 (2016) 171–182.

    29. [29]

      T.X.H. Le, H. Haflich, A.D. Shah, B.P. Chaplin, Environ. Sci. Technol. Lett. 6 (2019) 504–510.  doi: 10.1021/acs.estlett.9b00397

    30. [30]

      G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 38 (2004) 3705–3712.

    31. [31]

      J. Radjenovic, D.L. Sedlak, Environ. Sci. Technol. 49 (2015) 11292–11302.  doi: 10.1021/acs.est.5b02414

    32. [32]

      C. Trellu, C. Coetsier, J.C. Rouch, et al., Water Res. 131 (2018) 310–319.

    33. [33]

      J. Zheng, Z. Wang, J. Ma, S. Xu, Z. Wu, Environ. Sci. Technol. 52 (2018) 4117–4126.  doi: 10.1021/acs.est.7b06407

    34. [34]

      J. Xie, J. Ma, C. Zhang, T.D. Waite, Water Res. 203 (2021) 117547.

    35. [35]

      J. Xie, C. Zhang, T.D. Waite, Water Res. 216 (2022) 118319.

    36. [36]

      A. Donaghue, B.P. Chaplin, Environ. Sci. Technol. 47 (2013) 12391–12399.  doi: 10.1021/es4031672

    37. [37]

      K. Yang, D. Zu, Z. Zhang, J. Ma, Z. Yang, ACS EST Eng. 3 (2023) 2194–2201.  doi: 10.1021/acsestengg.3c00181

    38. [38]

      K. Yang, H. Lin, X. Feng, et al., Water Res. 224 (2022) 119047.

    39. [39]

      H.P. Tang, J. Wang, M. Qian, 28—Porous titanium structures and applications, in: M. Qian, F.H. (Sam) Froes (Eds.), Titanium Powder Metallurgy, Butterworth-Heinemann, Boston, 2015: pp. 533–554.

    40. [40]

      Q. Feng, X. Yuan, G. Liu, et al., J. Power Sources 366 (2017) 33–55.

    41. [41]

      Y. Zhang, S. -U. Geißen, C. Gal, Chemosphere 73 (2008) 1151–1161.

    42. [42]

      A. Ziylan, N.H. Ince, J. Hazard. Mater. 187 (2011) 24–36.

    43. [43]

      K. Gurung, M.C. Ncibi, M. Shestakova, M. Sillanpää, Appl. Catal. B 221 (2018) 329–338.

    44. [44]

      Y. Jing, B.P. Chaplin, Environ. Sci. Technol. 51 (2017) 2355–2365.  doi: 10.1021/acs.est.6b05513

    45. [45]

      H. Wang, J. Liu, X. Xiao, et al., Chin. Chem. Lett. 34 (2023) 107125.

    46. [46]

      J. Adusei-Gyamfi, B. Ouddane, L. Rietveld, J.P. Cornard, J. Criquet, Water Res. 160 (2019) 130–147.

    47. [47]

      X. Kong, S. Garg, M. Mortazavi, J. Ma, T.D. Waite, Environ. Sci. Technol. 57 (2023) 18636–18646.  doi: 10.1021/acs.est.2c07319

    48. [48]

      Y. Yuan, G. Xing, S. Garg, et al., Water Res. 177 (2020) 115785.

    49. [49]

      R. Fu, P.S. Zhang, Y.X. Jiang, L. Sun, X.H. Sun, Chemosphere 311 (2023) 136993.

    50. [50]

      J. Zambrano, H. Park, B. Min, Environ. Technol. 41 (2020) 3248–3259.  doi: 10.1080/09593330.2019.1649468

    51. [51]

      J.C. Fornaciari, L. -C. Weng, S.M. Alia, et al., Electrochim. Acta 405 (2022) 139810.

    52. [52]

      Y. Xue, Z. Wang, R. Naidu, et al., Chem. Eng. J. 433 (2022) 134546.

    53. [53]

      P. Sun, T. Meng, Z. Wang, et al., Environ. Sci. Technol. 53 (2019) 9024–9033.  doi: 10.1021/acs.est.9b00749

    54. [54]

      A. Nebbioso, A. Piccolo, Biomacromolecules 12 (2011) 1187–1199.  doi: 10.1021/bm101488e

    55. [55]

      M. Xie, C. Zhang, H. Zheng, G. Zhang, S. Zhang, Water Res. 217 (2022) 118424.

    56. [56]

      L. Lai, H. Ji, H. Zhang, et al., Appl. Catal. B 282 (2021) 119559.

    57. [57]

      J. Li, Z. Xiong, Y. Yu, et al., Appl. Catal. B 298 (2021) 120506.

    58. [58]

      P. Geng, J. Su, C. Miles, C. Comninellis, G. Chen, Electrochim. Acta 153 (2015) 316–324.

    59. [59]

      G. Greczynski, L. Hultman, Prog. Mater. Sci. 107 (2020) 100591.

  • 加载中
    1. [1]

      Shouchao ZhongYue WangMingshu XieYiqian WuJiuqiang LiJing PengLiyong YuanMaolin ZhaiWeiqun Shi . Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 2025, 36(5): 110312-. doi: 10.1016/j.cclet.2024.110312

    2. [2]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    3. [3]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    4. [4]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    5. [5]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    6. [6]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    7. [7]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    8. [8]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    9. [9]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    10. [10]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    11. [11]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    12. [12]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    13. [13]

      Bofeng LiYuxian WangYa LiuZhe HanTiantian XingYumin ZhangChunmao Chen . Design and engineering strategies of porous carbonaceous catalysts toward activation of peroxides for aqueous organic pollutants oxidation. Chinese Chemical Letters, 2025, 36(6): 110374-. doi: 10.1016/j.cclet.2024.110374

    14. [14]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    15. [15]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    16. [16]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    17. [17]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    20. [20]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return