Citation: Xibei Tan, Rongrong Wang, Naif Abdullah Al-Dhabi, Bin Wang, Rongfan Chen, Qian Zhang, Dao Zhou, Wangwang Tang, Hongyu Wang. Exploring the regulation mechanism of signaling molecules on algal-bacterial granular sludge through different N-acyl-homoserine lactones[J]. Chinese Chemical Letters, ;2025, 36(7): 110515. doi: 10.1016/j.cclet.2024.110515 shu

Exploring the regulation mechanism of signaling molecules on algal-bacterial granular sludge through different N-acyl-homoserine lactones

  • Corresponding author: Qian Zhang, qianzhang@whut.edu.cn Hongyu Wang, hywang96@126.com
  • Received Date: 17 May 2024
    Revised Date: 27 September 2024
    Accepted Date: 28 September 2024
    Available Online: 4 October 2024

Figures(6)

  • As a recently emerging wastewater treatment technology, Algal-bacterial granular sludge (ABGS) process shows significant advantages. However, current research on the ABGS system is a lack of a clear and complete understanding of the potential mechanism of signal molecules on the growth of ABGS. This study comprehensively explores the variations in the ABGS under different N-acyl-homoserine lactone (AHL) conditions by constructing three sequencing batch reactor (SBR) systems. The results indicate that N-hexanoyl-l-homoserine lactone (C6-HSL) accelerates the granulation process in the early stages by promoting the loosely bound extracellular polymeric substances (LB-EPS) secretion and filamentous bacteria growth, thereby shortening required time for initial granule formation. On the other hand, N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) expedites the granulation process by promoting the tightly bound extracellular polymeric substances (TB-EPS) and aromatic protein secretion, benefiting structural stability and nitrogen and phosphorus removal efficiency of mature ABGS.
  • 加载中
    1. [1]

      S.F. Mohsenpour, S. Hennige, N. Willoughby, A. Adeloye, T. Gutierrez, Sci. Total Environ. 752 (2021) 142168.

    2. [2]

      A.L. Gonçalves, J.C.M. Pires, M. Simões, Algal Res. 24 (2017) 403–415.

    3. [3]

      S.A. Razzak, M.M. Hossain, R.A. Lucky, A.S. Bassi, H. de Lasa, Renew. Sustain. Energy Rev. 27 (2013) 622–653.

    4. [4]

      W.S. Chai, W.G. Tan, H.S. Halimatul Munawaroh, V.K. Gupta, S.H. Ho, P.L. Show, Environ. Pollut. 269 (2021) 116236.

    5. [5]

      S. He, G. Xue, J. Hazard. Mater. 178 (2010) 895–899.

    6. [6]

      M. Zhang, B. Ji, Y. Liu, Sci. Total Environ. 752 (2021) 141957.

    7. [7]

      C.C. Tang, R. Wang, T.Y. Wang, et al., J. Water Proc. Eng. 44 (2021) 102418.

    8. [8]

      A.S. Abouhend, K. Milferstedt, J. Hamelin, et al., Environ. Sci. Technol. 54 (2020) 486–496.  doi: 10.1021/acs.est.9b04745

    9. [9]

      A. Abdelfattah, S.S. Ali, H. Ramadan, E.I. El-Aswar, et al., Environ. Sci. Technol. 13 (2023) 100205.

    10. [10]

      Q. Jiang, H. Chen, Z. Fu, et al., J. Environ. Res. Public Health 19 (2022) 13950.  doi: 10.3390/ijerph192113950

    11. [11]

      Z. Yue, P. Li, L. Bin, et al., Biochem. Eng. J. 164 (2020) 107801.

    12. [12]

      C. Sanchez-Sanchez, G. Baquerizo, E. Moreno-Rodríguez, Water Environ. J. 37 (2023) 657–670.  doi: 10.1111/wej.12873

    13. [13]

      R.K. Oruganti, K. Katam, P.L. Show, et al., Bioengineered 13 (2022) 10412–10453.  doi: 10.1080/21655979.2022.2056823

    14. [14]

      H. Chen, A. Li, C. Cui, et al., Environ. Int. 130 (2019) 104946.

    15. [15]

      Z. Feng, Y. Sun, T. Li, F. Meng, G. Wu, Sci. Total Environ. 677 (2019) 456–465.

    16. [16]

      J. Shuai, X. Hu, B. Wang, et al., Chin. Chem. Lett. 32 (2021) 3402–3409.

    17. [17]

      W. Lyu, S. Zhang, Y. Xie, et al., Environ. Pollut. Bioavailability 34 (2022) 407–418.  doi: 10.1080/26395940.2022.2123046

    18. [18]

      Q. He, Q. Song, S. Zhang, W. Zhang, H. Wang, Chem. Eng. J. 331 (2018) 841–849.

    19. [19]

      F.W. Gilcreas, Health Lab. Sci. 4 (1967) 137–141.

    20. [20]

      X.Y. Li, S.F. Yang, Water Res. 41 (2007) 1022–1030.

    21. [21]

      Z. Liu, J. Liu, Y. Zhao, et al., J. Clean. Prod. 410 (2023) 137327.

    22. [22]

      X. Cao, H. Cao, Y. Sheng, H. You, Y. Zhang, Biotechnol. Lett. 35 (2013) 345–350.  doi: 10.1007/s10529-012-1081-6

    23. [23]

      X. Xin, H. Lu, L. Yao, L. Leng, L. Guan, Appl. Biochem. Biotechnol. 181 (2017) 424–433.  doi: 10.1007/s12010-016-2221-6

    24. [24]

      L. Liu, Z. Zeng, M. Bee, et al., J. Hazard. Mater. 349 (2018) 135–142.

    25. [25]

      Y. Zhang, X. Dong, S. Liu, et al., J. Water Process Eng. 34 (2020) 101073.

    26. [26]

      L. Xu, Y. Chen, Z. Wang, et al., Chemosphere 312 (2023) 137256.

    27. [27]

      R.L. Meyer, A.M. Saunders, R.J. Zeng, J. Keller, L.L. Blackall, FEMS Microbiol. Ecol. 45 (2003) 253–261.

    28. [28]

      Y. Zhou, Y. Zhou, S. Chen, et al., Bioresour. Technol. 365 (2022) 128165.

    29. [29]

      A. Oehmen, P.C. Lemos, G. Carvalho, et al., Water Res. 41 (2007) 2271–2300.

    30. [30]

      Y. Shi, B. Ji, X. Zhang, Y. Liu, Sci. Total Environ. 856 (2023) 159175.

    31. [31]

      X. Liu, J. Liu, D. Deng, et al., J. Water Process Eng. 40 (2021) 101924.

    32. [32]

      V.S. Uma, S. Panigrahi, S. Chandrasekaran, C.V. Srinivas, B. Venkatraman, Algal Res. 69 (2023) 102914.

    33. [33]

      G. Si, B. Liu, Y. Liu, T. Yan, D. Wei, Bioresour. Technol. 354 (2022) 127226.

    34. [34]

      Y. Wang, J. Wang, Z. Liu, et al., Sci. Total Environ. 795 (2021) 148682.

    35. [35]

      Q. He, L. Chen, S. Zhang, et al., J. Hazard. Mater. 359 (2018) 222–230.

    36. [36]

      D. Gao, L. Liu, H. Liang, W.M. Wu, Crit. Rev. Biotechnol. 31 (2011) 137–152.  doi: 10.3109/07388551.2010.497961

    37. [37]

      W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Environ. Sci. Technol. 37 (2003) 5701–5710.

    38. [38]

      D. Zhou, C. Zhang, L. et al., Environ. Sci. Technol. 51 (2017) 3490–3498.  doi: 10.1021/acs.est.7b00355

    39. [39]

      X. Hou, S. Liu, Z. Zhang, Water Res. 75 (2015) 51–62.

    40. [40]

      C. Yin, F. Meng, G. -H. Chen, Water Res. 68 (2015) 740–749.

    41. [41]

      Z. Yang, J. Chen, B. Tang, et al., Chem. Eng. Sci. 284 (2024) 119447.

    42. [42]

      S. Zhang, H. Huo, F. Meng, Water Air Soil Pollut. 231 (2020) 236.

    43. [43]

      L. Xi, W. Huang, B. Sun, F. Meng, S. Gu, Environ. Eng. Res. 27 (2022) 210334-210330.

    44. [44]

      W. Xiong, S. Wang, Y. Jin, et al., Bioresour. Technol. 369 (2023) 128442.

    45. [45]

      M. El-Sheekh, M.M. El-Dalatony, N. Thakur, Y. Zheng, E.S. Salama, Int. J. Environ. Sci. Technol. 19 (2022) 2173–2194.  doi: 10.1007/s13762-021-03270-w

    46. [46]

      M.I. Hossain, A. Paparini, R. Cord-Ruwisch, Bioresour. Technol. 228 (2017) 1–8.

    47. [47]

      Z. Kondrotaite, L.C. Valk, F. Petriglieri, et al., Front. Microbiol. 13 (2022).  doi: 10.3389/fmicb.2022.917553

    48. [48]

      R. Chen, J. Shuai, Y. Xie, et al., Chemosphere 309 (2022) 136762.

    49. [49]

      J. Gao, Y. Duan, Y. Liu, et al., J. Environ. Sci. 78 (2019) 53–62.

    50. [50]

      H.X. Shi, X. Wang, J.S. Guo, et al., Chem. Eng. J. 428 (2022) 132097.

    51. [51]

      J. Zhu, H. You, Z. Li, et al., Chem. Eng. J. 446 (2022) 137284.

    52. [52]

      S. Huang, B. Zhang, Y. Liu, X. Feng, W. Shi, Bioresour. Technol. 354 (2022) 127202.

    53. [53]

      A. Galir Balkić, I. Ternjej, M. Špoljar, Ecohydrology 11 (2018) e1917.

  • 加载中
    1. [1]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    2. [2]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    3. [3]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    4. [4]

      Pan-Pan HuaHui-Jun FengShu-Ning LanFrancisco AznarezLi-Fang Zhang . Post-modification-induced supramolecular transformation of Hopf link to macrocycle. Chinese Chemical Letters, 2025, 36(6): 110684-. doi: 10.1016/j.cclet.2024.110684

    5. [5]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    6. [6]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    7. [7]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    8. [8]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    9. [9]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    12. [12]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    13. [13]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    14. [14]

      Xiaokang HouHuanxin MaMengmeng ZhaoChunhua FengShishu Zhu . Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid. Chinese Chemical Letters, 2025, 36(7): 110332-. doi: 10.1016/j.cclet.2024.110332

    15. [15]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    16. [16]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    17. [17]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    18. [18]

      Shuo TianShuyun ChenYunsen WangDianping Tang . Liposomal photoelectrochemical immunoassay for low-abundance proteins with ternary transition metal sulfides for signal amplification. Chinese Chemical Letters, 2025, 36(7): 110418-. doi: 10.1016/j.cclet.2024.110418

    19. [19]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    20. [20]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return