CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects
-
* Corresponding author.
E-mail address: D202081630@hust.edu.cn (B. Yan),
wutongbo@hust.edu.cn (T. Wu).
Citation:
Xiaolong Li, Changjiang Li, Chaopeng Shi, Jiarun Wang, Bei Yan, Xianjin Xiao, Tongbo Wu. CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects[J]. Chinese Chemical Letters,
;2025, 36(7): 110507.
doi:
10.1016/j.cclet.2024.110507
T.C. Xie, Y.H. Deng, J.R. Zhang, et al., Nucleic Acids Res. 50 (2022) 8431–8440.
doi: 10.1093/nar/gkac650
S. Okumura, G. Gines, N. Lobato-Dauzier, et al., Nature 610 (2022) 496–501.
doi: 10.1038/s41586-022-05218-7
M.P. Nikitin, Nat. Chem. 15 (2023) 70–82.
doi: 10.1038/s41557-022-01111-y
Y. Sun, S. Qi, X. Dong, et al., J. Hazard. Mater. 443 (2023) 130252.
G. Shi, C. Yan, J. Chen, Anal. Chem. 93 (2021) 3273–3279.
doi: 10.1021/acs.analchem.0c05173
Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, Chem. Rev. 119 (2019) 6459–6506.
doi: 10.1021/acs.chemrev.7b00663
S. Yang, J. Luo, L. Zhang, et al., Adv. Sci. 19 (2023) 2301814.
J. Chen, S. Fu, C. Zhang, H. Liu, X. Su, Small 18 (2022) 2108008.
C. Zhang, Y. Zhao, X. Xu, et al., Nat. Nanotechnol. 15 (2020) 709–715.
doi: 10.1038/s41565-020-0699-0
Q. Chao, Y. Zhang, Q. Li, et al., Anal. Chem. 95 (2023) 7723–7734.
doi: 10.1021/acs.analchem.3c00898
A.P. Lapteva, N. Sarraf, L. Qian, J. Am. Chem. Soc. 144 (2022) 12443–12449.
doi: 10.1021/jacs.2c04325
T. Wang, H. Hellmer, F.C. Simmel, Curr. Opin. Biotechnol. 79 (2023) 102867.
D.Y. Zhang, E. Winfree, J. Am. Chem. Soc. 131 (2009) 17303–17314.
doi: 10.1021/ja906987s
C. Jung, A.D. Ellington, Acc. Chem. Res. 47 (2014) 1825–35.
doi: 10.1021/ar500059c
R.M. Dirks, N.A. Pierce, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 15275–15278.
B.W. Zhang, T.R. Tian, D.X. Xiao, et al., Adv. Funct. Mater. 32 (2022) 2109728.
Z.W. Luo, Y.X. Li, P. Zhang, et al., Trends Anal. Chem. 151 (2022) 116582.
H.M. Wang, Y.Q. He, J. Wei, et al., Angew. Chem. Int. Ed. 61 (2022) 202115489.
P. Yin, H.M. Choi, C.R. Calvert, N.A. Pierce, Nature 451 (2008) 318–22.
doi: 10.1038/nature06451
D.Y. Zhang, A.J. Turberfield, B. Yurke, E. Winfree, Science 318 (2007) 1148532.
Q. Zhang, R. Zhao, C.C. Li, et al., Anal. Chem. 94 (2022) 13978–13986.
doi: 10.1021/acs.analchem.2c03223
S.Z. He, S.S. Yu, R.M. Li, et al., Angew. Chem. Int. Ed. 61 (2022) 202206529.
R.M. Li, Y.X. Zhu, X. Gong, et al., J. Am. Chem. Soc. 145 (2023) 2999–3007.
doi: 10.1021/jacs.2c11504
J. Wei, M.D. Yu, K.Y. Tan, et al., Small 19 (2023) 2207961.
P. Dong, R.M. Li, S.Z. He, et al., Chem. Sci. 14 (2023) 2159–2167.
doi: 10.1039/d2sc05568f
C. Zhang, L.L. Ge, Y.C. Zhuang, et al., Sci. China Inf. Sci. 62 (2019) 061301.
F. Wang, H. Lv, Q. Li, et al., Nat. Commun. 11 (2020) 121.
X. Song, J. Reif, ACS Nano 13 (2019) 6256–6268.
doi: 10.1021/acsnano.9b02562
J.K. Jung, C.M. Archuleta, K.K. Alam, J.B. Lucks, Nat. Chem. Biol. 18 (2022) 385–393.
doi: 10.1038/s41589-021-00962-9
S. Piranej, A. Bazrafshan, K. Salaita, Nat. Nanotechnol. 17 (2022) 514–523.
doi: 10.1038/s41565-022-01080-w
N. Xie, M.Q. Li, Y. Wang, et al., J. Am. Chem. Soc. 144 (2022) 9479–9488.
doi: 10.1021/jacs.2c03258
T. Song, A. Eshra, S. Shah, et al., Nat. Nanotechnol. 14 (2019) 1075–1081.
doi: 10.1038/s41565-019-0544-5
H. Hu, L.Q. Liu, L. Zhang, et al., Nano Res. 16 (2022) 865–872.
K.M. Cherry, L. Qian, Nature 559 (2018) 370–376.
doi: 10.1038/s41586-018-0289-6
K. Shi, S.Y. Xie, R.Y. Tian, et al., Sci. Adv. 7 (2021) 7802.
S.Y. Chen, B. Gong, C. Zhu, C.Y. Lei, Z. Nie, Trends Anal. Chem. 159 (2023) 116931.
H.M. Li, Y. Xie, F.M. Chen, et al., Chem. Soc. Rev. 52 (2023) 361–382.
doi: 10.1039/d2cs00594h
W.R. Su, J.R. Li, C. Ji, et al., Nano Res. 16 (2023) 9940–9953.
doi: 10.1007/s12274-023-5567-4
Y. Li, S.Y. Li, J. Wang, G.Z. Liu, Trends Biotechnol. 37 (2019) 730–743.
doi: 10.3390/catal9090730
Z.Y. Weng, Z. You, J. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) 202214987.
R.J. Fu, Y.L. Xianyu, Small 19 (2023) 2300057.
J.D. Habimana, R. Huang, B. Muhoza, et al., Biosens. Bioelectron. 203 (2022) 114033.
X.K. Cheng, Y.R. Li, J. Kou, et al., Biosens. Bioelectron. 215 (2022) 114559.
R. Montagud-Martinez, M. Heras-Hernandez, L. Goiriz, J.A. Daros, G. Rodrigo, A.C.S. Synth. Biol. 10 (2021) 950–956.
doi: 10.1021/acssynbio.0c00649
Y. Dai, R.A. Somoza, L. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 17399–17405.
doi: 10.1002/anie.201910772
H. Li, J. Yang, G. Wu, et al., Angew. Chem. Int. Ed. 61 (2022) 202203826.
Z.Y. Li, X. Ding, K. Yin, et al., Biosens. Bioelectron. 192 (2021) 113498.
D. Samanta, S.B. Ebrahimi, N. Ramani, C.A. Mirkin, J. Am. Chem. Soc. 144 (2022) 16310–16315.
doi: 10.1021/jacs.2c07625
C.M. Green, J. Spangler, K. Susumu, et al., ACS Nano 16 (2022) 20693–20704.
doi: 10.1021/acsnano.2c07749
W. Feng, A.M. Newbigging, J. Tao, et al., Chem. Sci. 12 (2021) 4683–4698.
doi: 10.1039/d0sc06973f
B.D. Huang, T.M. Groseclose, C.J. Wilson, Nat. Commun. 13 (2022) 3901.
D.D. Zeng, J.L. Jiao, T.L. Mo, Front. Microbiol. 15 (2024) 1355234.
J.L. Qiao, Z.Y. Zhao, Y.R. Li, et al., Crit. Rev. Food Sci. Nutr. (2023) 1–22. https://doi.org/10.1080/10408398.2023.2246558.
doi: 10.1080/10408398.2023.2246558
Y. Dhingra, S.K. Suresh, P. Juneja, D.G. Sashital, Mol. Cell 82 (2022) 4353–4367.
L. Yu, M.A. Marchisio, Nucleic Acids Res. 51 (2023) 1473–1487.
doi: 10.1093/nar/gkac1270
J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, et al., Science 360 (2018) 439–444.
doi: 10.1126/science.aaq0179
G. Petris, A. Casini, C. Montagna, et al., Nat. Commun. 8 (2017) 15334.
J. Burian, V.K. Libis, Y.A. Hernandez, et al., Nat. Biotechnol. 41 (2023) 626–630.
doi: 10.1038/s41587-022-01531-8
J.C. Cofsky, K.M. Soczek, G.J. Knott, E. Nogales, J.A. Doudna, Nat. Struct. Mol. Biol. 29 (2022) 395–402.
doi: 10.1038/s41594-022-00756-0
T. Luo, J.C. Li, Y. He, et al., Anal. Chem. 94 (2022) 6566–6573.
doi: 10.1021/acs.analchem.2c00401
J.Y. Zhang, Z.Y. Li, C. Guo, et al., Angew. Chem. Int. Ed. (2024) 202403123.
P. Jain, S. Rananaware, E. Vesco, et al., Nat. Commun. 14 (2023) 5409.
S.Y. Li, Q.X. Cheng, J.K. Liu, et al., Cell Res. 28 (2018) 491–493.
doi: 10.1038/s41422-018-0022-x
J.S. Chen, E. Ma, L.B. Harrington, et al., Science 360 (2018) 436–439.
doi: 10.1126/science.aar6245
N. Mohammad, L. Talton, Z. Hetzler, M. Gongireddy, Q.S. Wei, Nucleic Acids Res. 51 (2023) 9894–9904.
doi: 10.1093/nar/gkad715
W. Zhang, Y.Q. Mu, K.J. Dong, et al., Nucleic Acids Res. 50 (2022) 12674–12688.
doi: 10.1093/nar/gkac1144
Z.J. Liu, J. Xu, S. Huang, et al., Biosens. Bioelectron. 247 (2024) 115936.
Y. Wu, W. Luo, Z. Weng, et al., Nucleic Acids Res. 50 (2022) 11727–11737.
doi: 10.1093/nar/gkac886
O.O. Abudayyeh, J.S. Gootenberg, S. Konermann, et al., Science 353 (2016) 5573.
N.K. Fan, X.T. Bian, M. Li, et al., Sci. Adv. 8 (2022) 7382.
A. East-Seletsky, M.R. O'Connell, S.C. Knight, et al., Nature 538 (2016) 270–273.
doi: 10.1038/nature19802
K. Clement, J.Y. Hsu, M.C. Canver, J.K. Joung, L. Pinello, Mol. Cell 79 (2020) 11–29.
H.R. Kempton, L.E. Goudy, K.S. Love, L.S. Qi, Mol. Cell 78 (2020) 184–191.
S. Kawasaki, H. Ono, M. Hirosawa, et al., Nat. Commun. 14 (2023) 2243.
L. Oesinghaus, F.C. Simmel, Nat. Commun. 10 (2019) 2092.
W.J. Wang, Q.Y. Ge, X.W. Zhao, Trend. Anal. Chem. 160 (2023) 116960.
I.M. Slaymaker, L.Y. Gao, B. Zetsche, et al., Science 351 (2016) 84–88.
doi: 10.1126/science.aad5227
Y. Liu, F. Pinto, X.Y. Wan, et al., Nat. Commun. 13 (2022) 1937.
doi: 10.1109/icsp54964.2022.9778427
M. Chen, D.M. Wu, S.H. Tu, et al., Biosens. Bioelectron. 173 (2020) 112821.
J. Huang, Z. Liang, Y. Liu, J.D. Zhou, F.J. He, Anal. Chem. 94 (2022) 11409–11415.
doi: 10.1021/acs.analchem.2c02538
D.G. Zhang, L.J. Cai, X.W. Wei, et al., Nano Today 40 (2021) 101268.
Y.H. Zhang, L. Qian, W.J. Wei, et al., ACS Synth. Biol. 6 (2017) 211–216.
doi: 10.1021/acssynbio.6b00215
B. Yurke, A.J. Turberfield, A.P. Mill, F.C. Simmel, J.L. Neumann, Nature 406 (2000) 605–608.
X.B. Huang, Q. Zhou, M.X. Wang, et al., Front. Mol. Biosci. 7 (2020) 627848.
Y.C. Gao, X. Xiong, S. Wong, et al., Nat. Methods 13 (2016) 1043.
doi: 10.1038/nmeth.4042
M. Bellato, A.F. Chiacchiera, E. Salibi, et al., Front. Bioeng. Biotechnol. 9 (2021) 743950.
J. Santos-Moreno, Y. Schaerli, Biochem. Soc. Trans. 48 (2020) 1979–1993.
doi: 10.1042/bst20200020
A.K. Shaytan, R.V. Novikov, R.S. Vinnikov, A.K. Gribkova, G.S. Glukhov, Front. Mol. Biosci. 9 (2022) 1070526.
H. Kim, D. Bojar, M. Fussenegger, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 7214–7219.
doi: 10.1073/pnas.1821740116
J. Elbaz, O. Lioubashevski, F. Wang, et al., Nat. Nanotechnol. 5 (2010) 417–422.
doi: 10.1038/nnano.2010.88
H. Pei, L. Liang, G.B. Yao, et al., Angew. Chem. Int. Ed. 51 (2012) 9020–9024.
doi: 10.1002/anie.201202356
D.C. Swarts, M. Jinek, Mol. Cell 73 (2019) 589–600.
M. Rossetti, R. Merlo, N. Bagheri, et al., Nucleic Acids Res. 50 (2022) 8377–8391.
doi: 10.1093/nar/gkac578
S.D. Wang, H.J. Li, K.J. Dong, et al., Biosens. Bioelectron. 226 (2023) 115139.
J. You, H. Park, H. Lee, et al., Biosens. Bioelectron. 224 (2023) 115078.
M. Qing, S.L. Chen, Z. Sun, et al., Anal. Chem. 93 (2021) 7499–7507.
doi: 10.1021/acs.analchem.1c00805
H. Yan, Y.J. Wen, Z.M. Tian, et al., Nat. Biomed. Eng. 7 (2023) 1583–1601.
doi: 10.1038/s41551-023-01033-1
L. Liao, T.T. Gong, B.Y. Jiang, R. Yuan, Y. Xiang, Sensor. Actuator. B Chem. 379 (2023) 133221.
S. Peng, Z. Tan, S.Y. Chen, C.Y. Lei, Z. Nie, Chem. Sci. 11 (2020) 7362–7368.
doi: 10.1039/d0sc03084h
Y. Lv, Y.H. Sun, Y. Zhou, et al., Small 19 (2023) 2206105.
H.Y. Jia, H.L. Zhao, T. Wang, et al., Biosens. Bioelectron. 211 (2022) 114382.
X.F. Wang, F.Y. Wang, J.R. Wang, et al., Sensor. Actuator. B: Chem. 370 (2022) 132480.
C. Yan, G. Shi, J.H. Chen, J. Agric. Food Chem. 70 (2022) 12700–12707.
doi: 10.1021/acs.jafc.2c04548
S.H. Gong, X. Wang, P. Zhou, et al., Anal. Chem. 94 (2022) 15839–15846.
doi: 10.1021/acs.analchem.2c03666
J.F. Pan, F. Deng, Z. Liu, L.W. Zeng, J.H. Chen, Talanta 255 (2023) 124210.
Z.F. Gao, L.L. Zheng, L.M. Dong, et al., Anal. Chem. 94 (2022) 6371–6379.
doi: 10.1021/acs.analchem.2c00848
X.M. Hang, P.F. Liu, S. Tian, et al., Biosens. Bioelectron. 211 (2022) 114393.
C. Zhang, P.H. Zhang, H. Ren, et al., Chem. Eng. J. 446 (2022) 136864.
J.J. Shen, X.M. Zhou, Y.Y. Shan, et al., Nat. Commun. 11 (2020) 267.
Q. Han, X.L. Bian, Y. Chen, B.Z. Li, Sens. Actuators B: Chem. 393 (2023) 134265.
Z.Y. Zhang, J.L. Li, C.L. Chen, et al., Anal. Chim. Acta 1300 (2024) 342409.
J.J. Zhang, C.Y. Song, Y.F. Zhu, et al., Biosens. Bioelectron. 219 (2022) 114836.
Y.H. Yang, J.C. Liu, X.H. Zhou, Biosens. Bioelectron. 190 (2021) 113418.
Y.G. Ding, C. Tous, J. Choi, J. Chen, W.W. Wong, Nat. Commun. 15 (2024) 1572.
T. Tian, B.W. Shu, Y.Z. Jiang, et al., ACS Nano 15 (2021) 1167–1178.
doi: 10.1021/acsnano.0c08165
Y. Sheng, T.H. Zhang, S.H. Zhang, et al., Biosens. Bioelectron. 178 (2021) 113027.
P. Fozouni, S. Son, M.D.L. Derby, et al., Cell 184 (2021) 323–333.
M.C. Zeng, Y.Q. Ke, Z.Y. Zhuang, et al., Anal. Chem. 94 (2022) 10805–10812.
doi: 10.1021/acs.analchem.2c01588
Y.B. Zhang, Y. Chen, Q.L. Zhang, Y.Z. Liu, X.J. Zhang, Biosens. Bioelectron. 230 (2023) 115248.
S. Nimkar, B. Anand, Nucleic Acids Res. 48 (2020) 2486–2501.
doi: 10.1093/nar/gkz1218
C.Y. Hu, D.C. Ni, K.H. Nam, et al., Mol. Cell 82 (2022) 2754–2768.
doi: 10.3390/plants11202754
K.E. Dillard, M.W. Brown, N.V. Johnson, et al., Cell 175 (2018) 934–946.
K. Yoshimi, K. Takeshita, N. Kodera, et al., Nat. Commun. 13 (2022) 4917.
Y.B. Xiao, M. Luo, A.E. Dolan, M.F. Liao, A. Ke, Science 361 (2018) eaat0839.
Y.W. Huo, K.H. Nam, F. Ding, et al., Nat. Struct. Mol. Biol. 21 (2014) 771–777.
doi: 10.1038/nsmb.2875
H. Morisaka, K. Yoshimi, Y. Okuzaki, et al., Nat. Commun. 10 (2019) 5302.
R.J. Xiao, Z. Li, S.K. Wang, R.J. Han, L.F. Chang, Nucleic Acids Res. 49 (2021) 4120–4128.
doi: 10.1093/nar/gkab179
L.B. Harrington, D. Burstein, J.S. Chen, et al., Science 362 (2018) 839–842.
doi: 10.1126/science.aav4294
T. Karvelis, G. Bigelyte, J.K. Young, et al., Nucleic Acids Res. 48 (2020) 5016–5023.
doi: 10.1093/nar/gkaa208
X.S. Xu, A. Chemparathy, L.P. Zeng, et al., Mol. Cell 81 (2021) 4333–4345.
P. Wu, X.S. Ye, D.Q. Wang, et al., J. Hazard. Mater. 424 (2022) 127690.
M.M. Chen, J.Y. Zhang, Y. Peng, et al., Biosens. Bioelectron. 218 (2022) 114792.
B. Csörgő, L.M. León, I.J. Chau-Ly, et al., Nat. Methods 17 (2020) 1183–1190.
doi: 10.1038/s41592-020-00980-w
C. Kuscu, S. Arslan, R. Singh, J. Thorpe, M. Adli, Nat. Biotechnol. 32 (2014) 677–683.
doi: 10.1038/nbt.2916
H. Mangkhwar, B. Li, X. Ding, et al., Adv. Sci. 7 (2020) 1902312.
H.Y. Xiao, J.Y. Hu, C. Huang, et al., Trends Anal. Chem. 161 (2023) 117000.
M. Karlikow, E. Amalfitano, X. Yang, et al., Nat. Commun. 14 (2023) 1505.
F. Deng, Y. Li, B.Y. Yang, et al., Nat. Commun. 15 (2024) 1818.
K. Sun, L. Pu, C. Chen, et al., Nucleic Acids Res. 52 (2024) 1–13.
Kuangdi Luo , Yang Qin , Xuehao Zhang , Hanxu Ji , Heao Zhang , Jiangtian Li , Xianjin Xiao , Xinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Yuqing Liu , Shiling Zhang , Kai Jiang , Shiyue Ding , Limei Xu , Yingqi Liu , Ting Wang , Fenfen Zheng , Weiwei Xiong , Jun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Haijiang Gong , Qingtan Zeng , Shili Gai , Yaqian Du , Jing Zhang , Qingyu Wang , He Ding , Lichun Wu , Anees Ahmad Ansari , Piaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059
Ruixin Liu , Feng Shi , Yanping Xia , Haibing Zhu , Jiawen Cao , Kai Peng , Chuanli Ren , Juan Li , Zhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
Bo Liu , Shuaiqiang Shao , Junjie Cai , Zijian Zhang , Feng Tian , Kun Yang , Fan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814
Xueying Shi , Xiaoxuan Zhou , Bing Xiao , Hongxia Xu , Wei Zhang , Hongjie Hu , Shiqun Shao , Zhuxian Zhou , Youqing Shen , Xiaodan Xu , Jianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178
Feng Shi , Guiling Li , Haibing Zhu , Ling Li , Ming Chen , Juan Li , Huifang Shen , Hao Zeng , Lingfeng Min , Zhanjun Yang . Nanozyme-triggered polymerization amplification strategy for constructing highly sensitive surface plasmon resonance immunosensing. Chinese Chemical Letters, 2025, 36(6): 110333-. doi: 10.1016/j.cclet.2024.110333
Shuo Tian , Shuyun Chen , Yunsen Wang , Dianping Tang . Liposomal photoelectrochemical immunoassay for low-abundance proteins with ternary transition metal sulfides for signal amplification. Chinese Chemical Letters, 2025, 36(7): 110418-. doi: 10.1016/j.cclet.2024.110418
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Sixin Ai , Wenxiu Li , Huayong Zhu , Yang Wan , Weiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620