Citation: Xiaolong Li, Changjiang Li, Chaopeng Shi, Jiarun Wang, Bei Yan, Xianjin Xiao, Tongbo Wu. CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects[J]. Chinese Chemical Letters, ;2025, 36(7): 110507. doi: 10.1016/j.cclet.2024.110507 shu

CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects

    * Corresponding author.
    E-mail address: D202081630@hust.edu.cn (B. Yan),
    wutongbo@hust.edu.cn (T. Wu).
  • Received Date: 9 May 2024
    Revised Date: 7 August 2024
    Accepted Date: 24 September 2024
    Available Online: 24 September 2024

Figures(5)

  • Strand displacement-based DNA circuits have emerged as highly effective tools for molecular computation, serving purposes of amplification or decision-making. They are favored for their inherent occurrence and sensitivity to external conditions. However, achieving enhanced amplification or decision-making necessitates the incorporation of multiple strands, thereby increasing the risk of contamination. Recent advancements have led to the development of CRISPR-Cas-based DNA circuits. These systems aim to simplify the complexity associated with conventional circuits, mitigate contamination risks, and enable more substantial amplification or decision-making capabilities. Here, the review article centers on current strategies of CRISPR-Cas (Cas9, Cas12a, Cas13a) system-assisted circuits in amplification and decision-making, and assesses their tendencies and limitations in amplification circuits and decision-making circuits. Furthermore, we discuss the challenges of CRISPR-Cas in circuits and propose prospects that will contribute to constructing more efficient and diverse CRISPR-Cas-based DNA functional circuits.
  • 加载中
    1. [1]

      T.C. Xie, Y.H. Deng, J.R. Zhang, et al., Nucleic Acids Res. 50 (2022) 8431–8440.  doi: 10.1093/nar/gkac650

    2. [2]

      S. Okumura, G. Gines, N. Lobato-Dauzier, et al., Nature 610 (2022) 496–501.  doi: 10.1038/s41586-022-05218-7

    3. [3]

      M.P. Nikitin, Nat. Chem. 15 (2023) 70–82.  doi: 10.1038/s41557-022-01111-y

    4. [4]

      Y. Sun, S. Qi, X. Dong, et al., J. Hazard. Mater. 443 (2023) 130252.

    5. [5]

      G. Shi, C. Yan, J. Chen, Anal. Chem. 93 (2021) 3273–3279.  doi: 10.1021/acs.analchem.0c05173

    6. [6]

      Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, Chem. Rev. 119 (2019) 6459–6506.  doi: 10.1021/acs.chemrev.7b00663

    7. [7]

      S. Yang, J. Luo, L. Zhang, et al., Adv. Sci. 19 (2023) 2301814.

    8. [8]

      J. Chen, S. Fu, C. Zhang, H. Liu, X. Su, Small 18 (2022) 2108008.

    9. [9]

      C. Zhang, Y. Zhao, X. Xu, et al., Nat. Nanotechnol. 15 (2020) 709–715.  doi: 10.1038/s41565-020-0699-0

    10. [10]

      Q. Chao, Y. Zhang, Q. Li, et al., Anal. Chem. 95 (2023) 7723–7734.  doi: 10.1021/acs.analchem.3c00898

    11. [11]

      A.P. Lapteva, N. Sarraf, L. Qian, J. Am. Chem. Soc. 144 (2022) 12443–12449.  doi: 10.1021/jacs.2c04325

    12. [12]

      T. Wang, H. Hellmer, F.C. Simmel, Curr. Opin. Biotechnol. 79 (2023) 102867.

    13. [13]

      D.Y. Zhang, E. Winfree, J. Am. Chem. Soc. 131 (2009) 17303–17314.  doi: 10.1021/ja906987s

    14. [14]

      C. Jung, A.D. Ellington, Acc. Chem. Res. 47 (2014) 1825–35.  doi: 10.1021/ar500059c

    15. [15]

      R.M. Dirks, N.A. Pierce, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 15275–15278.

    16. [16]

      B.W. Zhang, T.R. Tian, D.X. Xiao, et al., Adv. Funct. Mater. 32 (2022) 2109728.

    17. [17]

      Z.W. Luo, Y.X. Li, P. Zhang, et al., Trends Anal. Chem. 151 (2022) 116582.

    18. [18]

      H.M. Wang, Y.Q. He, J. Wei, et al., Angew. Chem. Int. Ed. 61 (2022) 202115489.

    19. [19]

      P. Yin, H.M. Choi, C.R. Calvert, N.A. Pierce, Nature 451 (2008) 318–22.  doi: 10.1038/nature06451

    20. [20]

      D.Y. Zhang, A.J. Turberfield, B. Yurke, E. Winfree, Science 318 (2007) 1148532.

    21. [21]

      Q. Zhang, R. Zhao, C.C. Li, et al., Anal. Chem. 94 (2022) 13978–13986.  doi: 10.1021/acs.analchem.2c03223

    22. [22]

      S.Z. He, S.S. Yu, R.M. Li, et al., Angew. Chem. Int. Ed. 61 (2022) 202206529.

    23. [23]

      R.M. Li, Y.X. Zhu, X. Gong, et al., J. Am. Chem. Soc. 145 (2023) 2999–3007.  doi: 10.1021/jacs.2c11504

    24. [24]

      J. Wei, M.D. Yu, K.Y. Tan, et al., Small 19 (2023) 2207961.

    25. [25]

      P. Dong, R.M. Li, S.Z. He, et al., Chem. Sci. 14 (2023) 2159–2167.  doi: 10.1039/d2sc05568f

    26. [26]

      C. Zhang, L.L. Ge, Y.C. Zhuang, et al., Sci. China Inf. Sci. 62 (2019) 061301.

    27. [27]

      F. Wang, H. Lv, Q. Li, et al., Nat. Commun. 11 (2020) 121.

    28. [28]

      X. Song, J. Reif, ACS Nano 13 (2019) 6256–6268.  doi: 10.1021/acsnano.9b02562

    29. [29]

      J.K. Jung, C.M. Archuleta, K.K. Alam, J.B. Lucks, Nat. Chem. Biol. 18 (2022) 385–393.  doi: 10.1038/s41589-021-00962-9

    30. [30]

      S. Piranej, A. Bazrafshan, K. Salaita, Nat. Nanotechnol. 17 (2022) 514–523.  doi: 10.1038/s41565-022-01080-w

    31. [31]

      N. Xie, M.Q. Li, Y. Wang, et al., J. Am. Chem. Soc. 144 (2022) 9479–9488.  doi: 10.1021/jacs.2c03258

    32. [32]

      T. Song, A. Eshra, S. Shah, et al., Nat. Nanotechnol. 14 (2019) 1075–1081.  doi: 10.1038/s41565-019-0544-5

    33. [33]

      H. Hu, L.Q. Liu, L. Zhang, et al., Nano Res. 16 (2022) 865–872.

    34. [34]

      K.M. Cherry, L. Qian, Nature 559 (2018) 370–376.  doi: 10.1038/s41586-018-0289-6

    35. [35]

      K. Shi, S.Y. Xie, R.Y. Tian, et al., Sci. Adv. 7 (2021) 7802.

    36. [36]

      S.Y. Chen, B. Gong, C. Zhu, C.Y. Lei, Z. Nie, Trends Anal. Chem. 159 (2023) 116931.

    37. [37]

      H.M. Li, Y. Xie, F.M. Chen, et al., Chem. Soc. Rev. 52 (2023) 361–382.  doi: 10.1039/d2cs00594h

    38. [38]

      W.R. Su, J.R. Li, C. Ji, et al., Nano Res. 16 (2023) 9940–9953.  doi: 10.1007/s12274-023-5567-4

    39. [39]

      Y. Li, S.Y. Li, J. Wang, G.Z. Liu, Trends Biotechnol. 37 (2019) 730–743.  doi: 10.3390/catal9090730

    40. [40]

      Z.Y. Weng, Z. You, J. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) 202214987.

    41. [41]

      R.J. Fu, Y.L. Xianyu, Small 19 (2023) 2300057.

    42. [42]

      J.D. Habimana, R. Huang, B. Muhoza, et al., Biosens. Bioelectron. 203 (2022) 114033.

    43. [43]

      X.K. Cheng, Y.R. Li, J. Kou, et al., Biosens. Bioelectron. 215 (2022) 114559.

    44. [44]

      R. Montagud-Martinez, M. Heras-Hernandez, L. Goiriz, J.A. Daros, G. Rodrigo, A.C.S. Synth. Biol. 10 (2021) 950–956.  doi: 10.1021/acssynbio.0c00649

    45. [45]

      Y. Dai, R.A. Somoza, L. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 17399–17405.  doi: 10.1002/anie.201910772

    46. [46]

      H. Li, J. Yang, G. Wu, et al., Angew. Chem. Int. Ed. 61 (2022) 202203826.

    47. [47]

      Z.Y. Li, X. Ding, K. Yin, et al., Biosens. Bioelectron. 192 (2021) 113498.

    48. [48]

      D. Samanta, S.B. Ebrahimi, N. Ramani, C.A. Mirkin, J. Am. Chem. Soc. 144 (2022) 16310–16315.  doi: 10.1021/jacs.2c07625

    49. [49]

      C.M. Green, J. Spangler, K. Susumu, et al., ACS Nano 16 (2022) 20693–20704.  doi: 10.1021/acsnano.2c07749

    50. [50]

      W. Feng, A.M. Newbigging, J. Tao, et al., Chem. Sci. 12 (2021) 4683–4698.  doi: 10.1039/d0sc06973f

    51. [51]

      B.D. Huang, T.M. Groseclose, C.J. Wilson, Nat. Commun. 13 (2022) 3901.

    52. [52]

      D.D. Zeng, J.L. Jiao, T.L. Mo, Front. Microbiol. 15 (2024) 1355234.

    53. [53]

      J.L. Qiao, Z.Y. Zhao, Y.R. Li, et al., Crit. Rev. Food Sci. Nutr. (2023) 1–22. https://doi.org/10.1080/10408398.2023.2246558.  doi: 10.1080/10408398.2023.2246558

    54. [54]

      Y. Dhingra, S.K. Suresh, P. Juneja, D.G. Sashital, Mol. Cell 82 (2022) 4353–4367.

    55. [55]

      L. Yu, M.A. Marchisio, Nucleic Acids Res. 51 (2023) 1473–1487.  doi: 10.1093/nar/gkac1270

    56. [56]

      J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner, et al., Science 360 (2018) 439–444.  doi: 10.1126/science.aaq0179

    57. [57]

      G. Petris, A. Casini, C. Montagna, et al., Nat. Commun. 8 (2017) 15334.

    58. [58]

      J. Burian, V.K. Libis, Y.A. Hernandez, et al., Nat. Biotechnol. 41 (2023) 626–630.  doi: 10.1038/s41587-022-01531-8

    59. [59]

      J.C. Cofsky, K.M. Soczek, G.J. Knott, E. Nogales, J.A. Doudna, Nat. Struct. Mol. Biol. 29 (2022) 395–402.  doi: 10.1038/s41594-022-00756-0

    60. [60]

      T. Luo, J.C. Li, Y. He, et al., Anal. Chem. 94 (2022) 6566–6573.  doi: 10.1021/acs.analchem.2c00401

    61. [61]

      J.Y. Zhang, Z.Y. Li, C. Guo, et al., Angew. Chem. Int. Ed. (2024) 202403123.

    62. [62]

      P. Jain, S. Rananaware, E. Vesco, et al., Nat. Commun. 14 (2023) 5409.

    63. [63]

      S.Y. Li, Q.X. Cheng, J.K. Liu, et al., Cell Res. 28 (2018) 491–493.  doi: 10.1038/s41422-018-0022-x

    64. [64]

      J.S. Chen, E. Ma, L.B. Harrington, et al., Science 360 (2018) 436–439.  doi: 10.1126/science.aar6245

    65. [65]

      N. Mohammad, L. Talton, Z. Hetzler, M. Gongireddy, Q.S. Wei, Nucleic Acids Res. 51 (2023) 9894–9904.  doi: 10.1093/nar/gkad715

    66. [66]

      W. Zhang, Y.Q. Mu, K.J. Dong, et al., Nucleic Acids Res. 50 (2022) 12674–12688.  doi: 10.1093/nar/gkac1144

    67. [67]

      Z.J. Liu, J. Xu, S. Huang, et al., Biosens. Bioelectron. 247 (2024) 115936.

    68. [68]

      Y. Wu, W. Luo, Z. Weng, et al., Nucleic Acids Res. 50 (2022) 11727–11737.  doi: 10.1093/nar/gkac886

    69. [69]

      O.O. Abudayyeh, J.S. Gootenberg, S. Konermann, et al., Science 353 (2016) 5573.

    70. [70]

      N.K. Fan, X.T. Bian, M. Li, et al., Sci. Adv. 8 (2022) 7382.

    71. [71]

      A. East-Seletsky, M.R. O'Connell, S.C. Knight, et al., Nature 538 (2016) 270–273.  doi: 10.1038/nature19802

    72. [72]

      K. Clement, J.Y. Hsu, M.C. Canver, J.K. Joung, L. Pinello, Mol. Cell 79 (2020) 11–29.

    73. [73]

      H.R. Kempton, L.E. Goudy, K.S. Love, L.S. Qi, Mol. Cell 78 (2020) 184–191.

    74. [74]

      S. Kawasaki, H. Ono, M. Hirosawa, et al., Nat. Commun. 14 (2023) 2243.

    75. [75]

      L. Oesinghaus, F.C. Simmel, Nat. Commun. 10 (2019) 2092.

    76. [76]

      W.J. Wang, Q.Y. Ge, X.W. Zhao, Trend. Anal. Chem. 160 (2023) 116960.

    77. [77]

      I.M. Slaymaker, L.Y. Gao, B. Zetsche, et al., Science 351 (2016) 84–88.  doi: 10.1126/science.aad5227

    78. [78]

      Y. Liu, F. Pinto, X.Y. Wan, et al., Nat. Commun. 13 (2022) 1937.  doi: 10.1109/icsp54964.2022.9778427

    79. [79]

      M. Chen, D.M. Wu, S.H. Tu, et al., Biosens. Bioelectron. 173 (2020) 112821.

    80. [80]

      J. Huang, Z. Liang, Y. Liu, J.D. Zhou, F.J. He, Anal. Chem. 94 (2022) 11409–11415.  doi: 10.1021/acs.analchem.2c02538

    81. [81]

      D.G. Zhang, L.J. Cai, X.W. Wei, et al., Nano Today 40 (2021) 101268.

    82. [82]

      Y.H. Zhang, L. Qian, W.J. Wei, et al., ACS Synth. Biol. 6 (2017) 211–216.  doi: 10.1021/acssynbio.6b00215

    83. [83]

      B. Yurke, A.J. Turberfield, A.P. Mill, F.C. Simmel, J.L. Neumann, Nature 406 (2000) 605–608.

    84. [84]

      X.B. Huang, Q. Zhou, M.X. Wang, et al., Front. Mol. Biosci. 7 (2020) 627848.

    85. [85]

      Y.C. Gao, X. Xiong, S. Wong, et al., Nat. Methods 13 (2016) 1043.  doi: 10.1038/nmeth.4042

    86. [86]

      M. Bellato, A.F. Chiacchiera, E. Salibi, et al., Front. Bioeng. Biotechnol. 9 (2021) 743950.

    87. [87]

      J. Santos-Moreno, Y. Schaerli, Biochem. Soc. Trans. 48 (2020) 1979–1993.  doi: 10.1042/bst20200020

    88. [88]

      A.K. Shaytan, R.V. Novikov, R.S. Vinnikov, A.K. Gribkova, G.S. Glukhov, Front. Mol. Biosci. 9 (2022) 1070526.

    89. [89]

      H. Kim, D. Bojar, M. Fussenegger, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 7214–7219.  doi: 10.1073/pnas.1821740116

    90. [90]

      J. Elbaz, O. Lioubashevski, F. Wang, et al., Nat. Nanotechnol. 5 (2010) 417–422.  doi: 10.1038/nnano.2010.88

    91. [91]

      H. Pei, L. Liang, G.B. Yao, et al., Angew. Chem. Int. Ed. 51 (2012) 9020–9024.  doi: 10.1002/anie.201202356

    92. [92]

      D.C. Swarts, M. Jinek, Mol. Cell 73 (2019) 589–600.

    93. [93]

      M. Rossetti, R. Merlo, N. Bagheri, et al., Nucleic Acids Res. 50 (2022) 8377–8391.  doi: 10.1093/nar/gkac578

    94. [94]

      S.D. Wang, H.J. Li, K.J. Dong, et al., Biosens. Bioelectron. 226 (2023) 115139.

    95. [95]

      J. You, H. Park, H. Lee, et al., Biosens. Bioelectron. 224 (2023) 115078.

    96. [96]

      M. Qing, S.L. Chen, Z. Sun, et al., Anal. Chem. 93 (2021) 7499–7507.  doi: 10.1021/acs.analchem.1c00805

    97. [97]

      H. Yan, Y.J. Wen, Z.M. Tian, et al., Nat. Biomed. Eng. 7 (2023) 1583–1601.  doi: 10.1038/s41551-023-01033-1

    98. [98]

      L. Liao, T.T. Gong, B.Y. Jiang, R. Yuan, Y. Xiang, Sensor. Actuator. B Chem. 379 (2023) 133221.

    99. [99]

      S. Peng, Z. Tan, S.Y. Chen, C.Y. Lei, Z. Nie, Chem. Sci. 11 (2020) 7362–7368.  doi: 10.1039/d0sc03084h

    100. [100]

      Y. Lv, Y.H. Sun, Y. Zhou, et al., Small 19 (2023) 2206105.

    101. [101]

      H.Y. Jia, H.L. Zhao, T. Wang, et al., Biosens. Bioelectron. 211 (2022) 114382.

    102. [102]

      X.F. Wang, F.Y. Wang, J.R. Wang, et al., Sensor. Actuator. B: Chem. 370 (2022) 132480.

    103. [103]

      C. Yan, G. Shi, J.H. Chen, J. Agric. Food Chem. 70 (2022) 12700–12707.  doi: 10.1021/acs.jafc.2c04548

    104. [104]

      S.H. Gong, X. Wang, P. Zhou, et al., Anal. Chem. 94 (2022) 15839–15846.  doi: 10.1021/acs.analchem.2c03666

    105. [105]

      J.F. Pan, F. Deng, Z. Liu, L.W. Zeng, J.H. Chen, Talanta 255 (2023) 124210.

    106. [106]

      Z.F. Gao, L.L. Zheng, L.M. Dong, et al., Anal. Chem. 94 (2022) 6371–6379.  doi: 10.1021/acs.analchem.2c00848

    107. [107]

      X.M. Hang, P.F. Liu, S. Tian, et al., Biosens. Bioelectron. 211 (2022) 114393.

    108. [108]

      C. Zhang, P.H. Zhang, H. Ren, et al., Chem. Eng. J. 446 (2022) 136864.

    109. [109]

      J.J. Shen, X.M. Zhou, Y.Y. Shan, et al., Nat. Commun. 11 (2020) 267.

    110. [110]

      Q. Han, X.L. Bian, Y. Chen, B.Z. Li, Sens. Actuators B: Chem. 393 (2023) 134265.

    111. [111]

      Z.Y. Zhang, J.L. Li, C.L. Chen, et al., Anal. Chim. Acta 1300 (2024) 342409.

    112. [112]

      J.J. Zhang, C.Y. Song, Y.F. Zhu, et al., Biosens. Bioelectron. 219 (2022) 114836.

    113. [113]

      Y.H. Yang, J.C. Liu, X.H. Zhou, Biosens. Bioelectron. 190 (2021) 113418.

    114. [114]

      Y.G. Ding, C. Tous, J. Choi, J. Chen, W.W. Wong, Nat. Commun. 15 (2024) 1572.

    115. [115]

      T. Tian, B.W. Shu, Y.Z. Jiang, et al., ACS Nano 15 (2021) 1167–1178.  doi: 10.1021/acsnano.0c08165

    116. [116]

      Y. Sheng, T.H. Zhang, S.H. Zhang, et al., Biosens. Bioelectron. 178 (2021) 113027.

    117. [117]

      P. Fozouni, S. Son, M.D.L. Derby, et al., Cell 184 (2021) 323–333.

    118. [118]

      M.C. Zeng, Y.Q. Ke, Z.Y. Zhuang, et al., Anal. Chem. 94 (2022) 10805–10812.  doi: 10.1021/acs.analchem.2c01588

    119. [119]

      Y.B. Zhang, Y. Chen, Q.L. Zhang, Y.Z. Liu, X.J. Zhang, Biosens. Bioelectron. 230 (2023) 115248.

    120. [120]

      S. Nimkar, B. Anand, Nucleic Acids Res. 48 (2020) 2486–2501.  doi: 10.1093/nar/gkz1218

    121. [121]

      C.Y. Hu, D.C. Ni, K.H. Nam, et al., Mol. Cell 82 (2022) 2754–2768.  doi: 10.3390/plants11202754

    122. [122]

      K.E. Dillard, M.W. Brown, N.V. Johnson, et al., Cell 175 (2018) 934–946.

    123. [123]

      K. Yoshimi, K. Takeshita, N. Kodera, et al., Nat. Commun. 13 (2022) 4917.

    124. [124]

      Y.B. Xiao, M. Luo, A.E. Dolan, M.F. Liao, A. Ke, Science 361 (2018) eaat0839.

    125. [125]

      Y.W. Huo, K.H. Nam, F. Ding, et al., Nat. Struct. Mol. Biol. 21 (2014) 771–777.  doi: 10.1038/nsmb.2875

    126. [126]

      H. Morisaka, K. Yoshimi, Y. Okuzaki, et al., Nat. Commun. 10 (2019) 5302.

    127. [127]

      R.J. Xiao, Z. Li, S.K. Wang, R.J. Han, L.F. Chang, Nucleic Acids Res. 49 (2021) 4120–4128.  doi: 10.1093/nar/gkab179

    128. [128]

      L.B. Harrington, D. Burstein, J.S. Chen, et al., Science 362 (2018) 839–842.  doi: 10.1126/science.aav4294

    129. [129]

      T. Karvelis, G. Bigelyte, J.K. Young, et al., Nucleic Acids Res. 48 (2020) 5016–5023.  doi: 10.1093/nar/gkaa208

    130. [130]

      X.S. Xu, A. Chemparathy, L.P. Zeng, et al., Mol. Cell 81 (2021) 4333–4345.

    131. [131]

      P. Wu, X.S. Ye, D.Q. Wang, et al., J. Hazard. Mater. 424 (2022) 127690.

    132. [132]

      M.M. Chen, J.Y. Zhang, Y. Peng, et al., Biosens. Bioelectron. 218 (2022) 114792.

    133. [133]

      B. Csörgő, L.M. León, I.J. Chau-Ly, et al., Nat. Methods 17 (2020) 1183–1190.  doi: 10.1038/s41592-020-00980-w

    134. [134]

      C. Kuscu, S. Arslan, R. Singh, J. Thorpe, M. Adli, Nat. Biotechnol. 32 (2014) 677–683.  doi: 10.1038/nbt.2916

    135. [135]

      H. Mangkhwar, B. Li, X. Ding, et al., Adv. Sci. 7 (2020) 1902312.

    136. [136]

      H.Y. Xiao, J.Y. Hu, C. Huang, et al., Trends Anal. Chem. 161 (2023) 117000.

    137. [137]

      M. Karlikow, E. Amalfitano, X. Yang, et al., Nat. Commun. 14 (2023) 1505.

    138. [138]

      F. Deng, Y. Li, B.Y. Yang, et al., Nat. Commun. 15 (2024) 1818.

    139. [139]

      K. Sun, L. Pu, C. Chen, et al., Nucleic Acids Res. 52 (2024) 1–13.

  • 加载中
    1. [1]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    2. [2]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    3. [3]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    4. [4]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

    5. [5]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    6. [6]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    7. [7]

      Ruixin LiuFeng ShiYanping XiaHaibing ZhuJiawen CaoKai PengChuanli RenJuan LiZhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664

    8. [8]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    9. [9]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    10. [10]

      Xueying ShiXiaoxuan ZhouBing XiaoHongxia XuWei ZhangHongjie HuShiqun ShaoZhuxian ZhouYouqing ShenXiaodan XuJianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178

    11. [11]

      Feng ShiGuiling LiHaibing ZhuLing LiMing ChenJuan LiHuifang ShenHao ZengLingfeng MinZhanjun Yang . Nanozyme-triggered polymerization amplification strategy for constructing highly sensitive surface plasmon resonance immunosensing. Chinese Chemical Letters, 2025, 36(6): 110333-. doi: 10.1016/j.cclet.2024.110333

    12. [12]

      Shuo TianShuyun ChenYunsen WangDianping Tang . Liposomal photoelectrochemical immunoassay for low-abundance proteins with ternary transition metal sulfides for signal amplification. Chinese Chemical Letters, 2025, 36(7): 110418-. doi: 10.1016/j.cclet.2024.110418

    13. [13]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    14. [14]

      Sixin AiWenxiu LiHuayong ZhuYang WanWeiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904

    15. [15]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    18. [18]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    19. [19]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    20. [20]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return