Citation: Xinhui Fang, Xinrui Wang, Bin Ding. Applications of luminescent metal-organic frameworks as pioneering biosensors for biological and chemical detection[J]. Chinese Chemical Letters, ;2025, 36(8): 110453. doi: 10.1016/j.cclet.2024.110453 shu

Applications of luminescent metal-organic frameworks as pioneering biosensors for biological and chemical detection

    * Corresponding authors.
    E-mail addresses: wangxinrui-tjnu@outlook.com (X. Wang),
    hxxydb@tjnu.edu.cn (B. Ding).
  • Received Date: 7 July 2024
    Revised Date: 9 August 2024
    Accepted Date: 12 September 2024
    Available Online: 12 September 2024

Figures(10)

  • Biological sensing technology plays a crucial role in various key areas such as disease diagnosis, environmental monitoring, and biotechnology. Luminescent metal-organic frameworks (LMOFs), with their remarkable advantages including large surface area, customizable pore structures, and highly active functional sites, have emerged as a frontier in biosensor research. This review clarifies the potential of LMOFs in biological sensing applications, with particular emphasis on their efficient performance in detecting amino acids, biomarkers, and drugs, explore the possibility of integrating LMOFs with portable analytical techniques, providing an innovative perspective for advancing luminescence detection technology. Some effective characterization methods to encode these sensing mechanisms including Förster resonance energy transfer (FRET), photoinduced electron transfer (PET) and thermally activated energy back transfer (BENT) highlighted their connection and difference. Finally, the article summarizes the achievements of LMOFs in biological sensing and provides a perspective on future research directions and potential applications, aiming to propel the continuous development of this field.
  • 加载中
    1. [1]

      Y. Xu, Q. Li, H. Xue, H. Pang, Coord. Chem. Rev. 376 (2018) 292–318.

    2. [2]

      S. Wu, H. Min, W. Shi, P. Cheng, Adv. Mater. 32 (2019) 1805871.

    3. [3]

      A. Cadiau, K. Adil, P.M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 353 (2016) 137–140.  doi: 10.1126/science.aaf6323

    4. [4]

      B. Getman, Y.S. Bae, C.E. Wilmer, R.Q. Snurr, Chem. Rev. 112 (2012) 703–723.  doi: 10.1021/cr200217c

    5. [5]

      W. Liang, P. Wied, F. Carraro, et al., Chem. Rev. 121 (2021) 1077–1129.  doi: 10.1021/acs.chemrev.0c01029

    6. [6]

      R.B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Coord. Chem. Rev. 378 (2019) 87–103.

    7. [7]

      R.E. Malekshah, M. Moharramnejad, S. Gharanli, et al., ACS Omega 8 (2023) 31600–31619.  doi: 10.1021/acsomega.3c02552

    8. [8]

      R.A. Peralta, M.T. Huxley, J.D. Evans, et al., J. Am. Chem. Soc. 142 (2020) 13533–13543.  doi: 10.1021/jacs.0c05286

    9. [9]

      M. d. J. Velásquez-Hernández, M. Linares-Moreau, E. Astria, et al., Coord. Chem. Rev. 429 (2021) 213651.

    10. [10]

      J. Wang, M. Euring, K. Ostendorf, K. Zhang, J. Bioresour. Bioprod. 7 (2022) 1–13.

    11. [11]

      Y. Wang, S. Yuan, Z. Hu, et al., ACS Sustain. Chem. Eng. 7 (2019) 7118–7126.  doi: 10.1021/acssuschemeng.9b00062

    12. [12]

      J.D. Xiao, H.L. Jiang, Acc. Chem. Res. 52 (2019) 356–366.  doi: 10.1021/acs.accounts.8b00521

    13. [13]

      Y. Ye, Z. Ma, R.B. Lin, et al., J. Am. Chem. Soc. 141 (2019) 4130–4136.  doi: 10.1021/jacs.9b00232

    14. [14]

      Y. Zhang, L. Yang, L. Wang, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 58 (2019) 8145–8150.  doi: 10.1002/anie.201903600

    15. [15]

      I. Schwedler, S. Henke, M.T. Wharmby, et al., Dalton Trans. 45 (2016) 4230–4241.

    16. [16]

      H. Min, S.Y. Wu, Z.S. Han, et al., Chem Eur. J. 27 (2021) 17459–17464.  doi: 10.1002/chem.202103297

    17. [17]

      B. Yan, J. Mater. Chem. 7 (2019) 8155–8175.  doi: 10.1039/c9tc01477b

    18. [18]

      Y. An, Y. Liu, Z. Wang, et al., J Colloid Interface Sci. 533 (2019) 9–12.

    19. [19]

      S. Mukherjee, K.K.R. Datta, R.A. Fischer, Trend. Chem. 3 (2021) 911–925.

    20. [20]

      S.S. Lam, C. Xia, C. Sonne, J. Bioresour. Bioprod. 7 (2022) 145–147.

    21. [21]

      H. Ma, Z. Cheng, X. Li, et al., J. Bioresour. Bioprod. 8 (2023) 15–32.

    22. [22]

      R. Sikka, P. Kumar, J. Lee, C. Sonne, J. Porous Mater. 29 (2022) 515–522.  doi: 10.1007/s10934-021-01192-z

    23. [23]

      D. Wu, D.M. Wang, X.M. Ye, et al., Chin. Chem. Lett. 31 (2020) 1504–1507.

    24. [24]

      V. French, C. Du, E.J. Foster, J. Bioresour. Bioprod. 8 (2023) 399–407.

    25. [25]

      X.Q. Wu, P.Q. Feng, Z. Guo, X. Wei, Langmuir 36 (2020) 14123–14129.  doi: 10.1021/acs.langmuir.0c02799

    26. [26]

      J. Cui, F. Li, Y. Wang, et al., Sep. Purif. Technol. 250 (2020) 117116.

    27. [27]

      D. Hua, S. Gao, M. Zhang, W. Ma, C.B. Huang, Carbohydr. Polym. 247 (2020) 116743.

    28. [28]

      H. Han, Z. Sun, X. Zhao, S. Yang, G. Wang, ACS Appl. Mater. Interfaces 15 (2023) 51411–51420.  doi: 10.1021/acsami.3c12012

    29. [29]

      Z. Yuan, L. Chen, X. Zhou, et al., J. Mater. Chem. A 11 (2023) 21857–21863.  doi: 10.1039/d3ta04738e

    30. [30]

      Y.F. Shi, Y.P. Jiang, X.Z. Wang, et al., Inorg Chem. 61 (2022) 15921–15935.  doi: 10.1021/acs.inorgchem.2c02126

    31. [31]

      Y.F. Shi, Y.P. Jiang, X.Z. Wang, et al., ACS Appl. Nano Mater. 5 (2022) 15629–15641.  doi: 10.1021/acsanm.2c03688

    32. [32]

      X.Z. Wang, Y.F. Shi, Y.P. Jiang, et al., Sens. Actuator. B 344 (2021) 129314.

    33. [33]

      X.Z. Wang, X.R. Wang, Y.Y. Liu, et al., Ultrason. Sonochem. 59 (2019) 104734.

    34. [34]

      Y.F. Guo, Z.S. Han, H. Min, et al., Small Struct. 3 (2022) 2100113.

    35. [35]

      F. Afshariazar, A. Morsali, S. Sorbara, et al., Chem. Eur. J. 27 (2021) 11837–11844.  doi: 10.1002/chem.202100821

    36. [36]

      M.C. Lawrence, A.M. Spoel, M.J. Katz, J. Phys. Chem. C 128 (2024) 10698–10704.  doi: 10.1021/acs.jpcc.4c02334

    37. [37]

      X. Ma, L. Wang, Q. Zhang, H.L. Jiang, Angew. Chem. Int. Ed. 58 (2019) 12175–12179.  doi: 10.1002/anie.201907074

    38. [38]

      K. Wang, W. Ma, Y.C. Xu, et al., Chin. Chem. Lett. 31 (2020) 3149–3152.

    39. [39]

      Q. Li, J. Fu, W. Chen, et al., Carbon Lett. 33 (2023) 1189–1196.

    40. [40]

      Z.H. Chen, Z.S. Han, W. Shi, P. Cheng, Acta Chim. Sin. 78 (2020) 1336–1348.  doi: 10.6023/a20090439

    41. [41]

      S. Jin, H.J. Son, O.K. Farha, G.P. Wiederrecht, J.T. Hupp, J. Am. Chem. Soc. 135 (2013) 955–958.  doi: 10.1021/ja3097114

    42. [42]

      H. Li, Y. He, Q. Li, et al., Z. Kristallogr. Cryst. Mater. 234 (2019) 269–276.  doi: 10.1515/zkri-2018-2130

    43. [43]

      J.X. Cui, T. Lu, F. Li, et al., J. Colloid Interface Sci. 582 (2021) 506–514.

    44. [44]

      Z.S. Han, W. Shi, P. Cheng. Chin. Chem. Lett. 29 (2018) 819–822.

    45. [45]

      Q.T. Xu, Z.H. Chen, H. Min, et al., Inorg. Chem. 59 (2020) 6729–6735.  doi: 10.1021/acs.inorgchem.9b03669

    46. [46]

      Z.S. Han, K.Y. Wang, H. Min, et al., Angew. Chem. Int. Ed. 61 (2022) e202204066.

    47. [47]

      S. Nangare, S. Patil, A. Patil, P. Deshmukh, P. Patil, J. Photochem. Photobiol. A 438 (2023) 114532.

    48. [48]

      Z. Han, K. Wang, H.C. Zhou, P. Cheng, W. Shi, Nat. Protoc. 18 (2023) 1621–1640.  doi: 10.1038/s41596-023-00810-1

    49. [49]

      S. Soni, P.K. Bajpai, J. Mittal, C. Arora, J. Mol. Liq. 314 (2020) 113642.

    50. [50]

      H. Min, Z.H. Chen, Z.S. Han, et al., Commun. Chem. 5 (2022): 248–276.

    51. [51]

      T. Gadzikwa, P. Matseketsa, Dalton Trans. 53 (2024) 7659–7668.  doi: 10.1039/d4dt00514g

    52. [52]

      I. Luz, M. Soukri, M. Lail, Chem. Sci. 9 (2018) 4589–4599.  doi: 10.1039/c7sc05372j

    53. [53]

      H. Min, T. Sun, W. Cui, et al., Inorg. Chem. 62 (2023) 8739–8745.  doi: 10.1021/acs.inorgchem.3c01025

    54. [54]

      Y.Y. Zhang, Y.L. Zhao, Y.N. Wu, et al., Spectrochim. Acta A 247 (2021) 119123.

    55. [55]

      T. Gorai, W. Schmitt, T. Gunnlaugsson, Dalton Trans. 50 (2021) 770–784.  doi: 10.1039/d0dt03684f

    56. [56]

      X.Y. Li, W.J. Shi, X.Q. Wang, et al., Cryst. Growth Des. 17 (2017) 4217–4224.  doi: 10.1021/acs.cgd.7b00530

    57. [57]

      Z. Han, K. Wang, M. Wang, et al., Chem 9 (2023) 2561–2572.

    58. [58]

      Y. Wan, J. Wang, H. Shu, et al., Inorg. Chem. 60 (2021) 7345–7350.  doi: 10.1021/acs.inorgchem.1c00502

    59. [59]

      K.A. White, D.A. Chengelis, K.A. Gogick, et al., J. Am. Chem. Soc. 131 (2009) 18069–18071.  doi: 10.1021/ja907885m

    60. [60]

      Y. Xie, G. Sun, J. Li, L. Sun, Adv. Funct. Mater. 33 (2023) 2303663.

    61. [61]

      Y. Zhang, H. Yao, Y. Xu, Z. Xia, Dyes Pigm. 157 (2018) 321–327.

    62. [62]

      S.N. Zhao, G. Wang, D. Poelman, P.V.D. Voort, Materials (Basel) 11 (2018) 572.  doi: 10.3390/ma11040572

    63. [63]

      F. González Chávez, H. Nájera, M.A. Leyva, et al., Cryst. Growth Des. 20 (2020) 4273–4292.  doi: 10.1021/acs.cgd.9b01542

    64. [64]

      H. Min, Z. Han, T. Sun, et al., Sci. China Chem. 66 (2023) 3511–3517.  doi: 10.1007/s11426-023-1822-6

    65. [65]

      X. Liu, W. Liu, Y. Kou, et al., Inorg. Chem. Front. 9 (2022) 465–474.

    66. [66]

      A.M. Lunev, A.V. Sidoruk, V.E. Gontcharenko, et al., Inorg. Chim. Acta 537 (2022) 120956.

    67. [67]

      J. Rong, W. Zhang, J. Bai, CrystEngComm 18 (2016) 7728–7736.

    68. [68]

      Z.H. Chen, Y.L. Lu, L. Wang, et al., J. Am. Chem. Soc. 145 (2023) 260–267.  doi: 10.1021/jacs.2c09866

    69. [69]

      X. Ye, D. Wang, K. Yuan, et al., J. Mol. Struct. 1225 (2021) 129094.

    70. [70]

      S.A. Diamantis, A. Margariti, A.D. Pournara, et al., Inorg. Chem. Front. 5 (2018) 1493–1511.  doi: 10.1039/c8qi00090e

    71. [71]

      Y.Y. Zhang, Y.L. Zhao, B. Song, C.B. Huang, Dyes Pigm. 188 (2021) 109205.

    72. [72]

      V. Boiko, Z. Dai, J. Li, D. Hreniak, J. Lumin. 250 (2022) 119115.

    73. [73]

      A. Broasca, M. Greculeasa, F. Voicu, et al., J. Am. Chem. Soc. 146 (2024) 2196–2207.  doi: 10.1021/jacs.3c12371

    74. [74]

      M. Wang, Z. Han, K. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202318722.

    75. [75]

      T. Sun, H. Min, Z. Han, et al., Chin. Chem. Lett. 35 (2024) 108718.

    76. [76]

      D.F. Sava Gallis, L.E.S. Rohwer, M.A. Rodriguez, et al., ACS Appl. Mater. Interfaces 9 (2017) 22268–22277.  doi: 10.1021/acsami.7b05859

    77. [77]

      O.G. Willis, F. Zinna, G. Pescitelli, C. Micheletti, L. Di Bari, Dalton Trans. 51 (2022) 518–523.  doi: 10.1039/d1dt03843e

    78. [78]

      S. Yang, S. Gong, Z. Zhou, et al., J. Phys. Chem. C 125 (2021) 10431–10440.  doi: 10.1021/acs.jpcc.1c00856

    79. [79]

      A. Karmakar, P. Samanta, S. Dutta, S.K. Ghosh, Chem. Asian J. 14 (2019) 4506–4519.  doi: 10.1002/asia.201901168

    80. [80]

      A.B.S. Garcia, M.R. Davolos, S.A.M. Lima, A.M. Pires, J. Lumin. 272 (2024) 120653.

    81. [81]

      Z. Nie, X. Ke, D. Li, et al., J. Phys. Chem. C 123 (2019) 22959–22970.  doi: 10.1021/acs.jpcc.9b05234

    82. [82]

      L.Y. Xu, Z.C. Wang, G.M. Li, Y.X. Li, Adv. Opt. Mater. 12 (2024) 2400556.

    83. [83]

      C. Herlan, S. Bräse, Dalton Trans. 49 (2020) 2397-2242.

    84. [84]

      J. Wang, T. Hu, Q. Han, et al., Anal. Bioanal. Chem. 415 (2023) 5859–5874.  doi: 10.1007/s00216-023-04843-z

    85. [85]

      L. Zhai, W.W. Zhang, X.M. Ren, J.L. Zuo, Dalton Trans. 44 (2015) 5746–5754.

    86. [86]

      Y.W. Zhao, F.Q. Zhang, X.M. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 24123–24130.  doi: 10.1021/acsami.6b07724

    87. [87]

      C.S.L. Koh, H.Y.F. Sim, S.X. Leong, et al., ACS Mater. Lett. 3 (2021) 557–573.  doi: 10.1021/acsmaterialslett.1c00047

    88. [88]

      R. Huo, T. Zhang, G. Zeng, et al., Chin. J. Chem. 42 (2024) 283–293.  doi: 10.1002/cjoc.202300448

    89. [89]

      X. Song, L. Zhao, N. Zhang, et al., Anal. Chem. 94 (2022) 14054–14060.  doi: 10.1021/acs.analchem.2c03615

    90. [90]

      G.K. Stavroglou, E. Tylianakis, G.E. Froudakis, ChemPhysChem 25 (2024) e202300721.

    91. [91]

      Y.Y. Zhang, Y.L. Zhao, A. Zhou, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 261 (2021) 120014.

    92. [92]

      Y.J. Zhang, H.X. Nie, M.H. Yu, Z. Chang, J. Solid State Chem. 300 (2021) 122257.

    93. [93]

      C.T. Hsieh, K. Ariga, L.K. Shrestha, S.H. Hsu, Biomacromolecules 22 (2021) 1053–1064.  doi: 10.1021/acs.biomac.0c00920

    94. [94]

      R. Rani, A. Deep, B. Mizaikoff, S. Singh, Vacuum 164 (2019) 449–457.

    95. [95]

      L. Xu, X. Geng, Q. Li, et al., Colloid. Surf. B: Biointerfaces 237 (2024) 113836.

    96. [96]

      O.P. Xie, C.B. Huang, Y.Q. Liang, et al., Chin. Chem. Lett. 33 1 (2022) 293–297.

    97. [97]

      R. Zhang, X. Song, Y. Liu, et al., J. Mater. Chem. A 7 (2019) 26934–26943.  doi: 10.1039/c9ta09571c

    98. [98]

      B. Liu, H.F. Zhou, L. Hou, Y.Y. Wang, Dalton Trans. 47 (2018) 5298–5303.  doi: 10.1039/c8dt00502h

    99. [99]

      H. Liu, M. Zhang, H. Zhao, et al., RSC Adv. 10 (2020) 4045–4057.  doi: 10.1039/c9ra09672h

    100. [100]

      Y. Deng, M. Zhu, T. Lu, et al., Sep. Purif. Technol. 304 (2023) 122235.

    101. [101]

      Y. Wang, S.J.D. Smith, Y. Liu, et al., Sep. Purif. Technol. 302 (2022) 122001.

    102. [102]

      Y. Deng, T. Lu, J. Cui, et al., Sep. Purif. Technol. 277 (2021) 119623.

    103. [103]

      X.H. Dong, Z.G. Li, D.Y. Bian, et al., Dalton Trans. 52 (2023) 12909–12917.  doi: 10.1039/d3dt01975f

    104. [104]

      B. Mohan, S. Kumar, H. Xi, et al., Biosens. Bioelectron. 197 (2022) 113738.

    105. [105]

      D. Aliyari, M. Mahdavian, B. Ramezanzadeh, Mater. Today. Chem. 38 (2024) 102105.

    106. [106]

      A. Linsha Mali, S.S. Priya, M.R. Rekha, J. Appl. Polym. Sci. 138 (2021) 51323.

    107. [107]

      K.T. Nguyen, P.H.L. Tran, H.V. Ngo, T.T.D. Tran, ACAMC 21 (2021) 2082–2088.  doi: 10.2174/1871520621666201231141842

    108. [108]

      S. Tarasi, A. Ramazani, A. Morsali, et al., Inorg. Chem. 61 (2022) 13125–13132.  doi: 10.1021/acs.inorgchem.2c01820

    109. [109]

      J. Cousin-Saint-Remi, S. Van der Perre, T. Segato, et al., ACS Appl. Mater. Interfaces 11 (2019) 13694–13703.  doi: 10.1021/acsami.9b00521

    110. [110]

      L. Meng, B. Yu, Y. Qin, Commun. Chem. 4 (2021) 82-10.

    111. [111]

      W. Zhang, Y. Liu, G. Lu, et al., Adv. Mater. 27 (2015) 2923–2929.  doi: 10.1002/adma.201405752

    112. [112]

      P. Geng, L. Wang, M. Du, et al., Adv. Mater. 34 (2022) 2107836.

    113. [113]

      B. Li, T. Suo, S. Xie, et al., Trends Anal. Chem. 135 (2021) 116163.

    114. [114]

      S. Abednatanzi, P.G. Derakhshandeh, H. Depauw, et al., Chem. Soc. Rev. 48 (2019) 2535–2565.  doi: 10.1039/c8cs00337h

    115. [115]

      T. Gorai, W. Schmitt, T. Gunnlaugsson, Dalton Trans. 5 (2021) 77–784.

    116. [116]

      Z. Ajoyan, H.A. Bicalho, P.R. Donnarumma, A. Antanovich, A.J. Howarth, J. Mater. Chem. C 11 (2023) 8929–8934.  doi: 10.1039/d3tc01199b

    117. [117]

      E. Bartolomé, A. Arauzo, S. Fuertes, et al., Dalton Trans. 52 (2023) 7258–7727.  doi: 10.1039/d3dt00367a

    118. [118]

      D. Meng, T. Zhao, D. Busko, et al., Adv. Opt. Mater. 12 (2024) 2300867.

    119. [119]

      W.N. Miao, B. Liu, H. Li, et al., Inorg. Chem. 61 (2022) 14322–14332.  doi: 10.1021/acs.inorgchem.2c02025

    120. [120]

      À. Tubau, L. Rodríguez, A. Lázaro, R. Vicente, M. Font-Bardía, New J. Chem. 45 (2021) 2228–22215.

    121. [121]

      K. Yuan, D. Wang, X. Ye, et al., J. Solid State Chem. 303 (2021) 122477.

    122. [122]

      S. Sun, Y. Zhao, J. Wang, R. Pei, J. Mater. Chem. B 1 (2022) 9535–9564.  doi: 10.1039/d2tb01884e

    123. [123]

      W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev., 46 (2017) 3242–3285.

    124. [124]

      B. Yan, Acc. Chem. Res, 50 (2017) 2789–2798.  doi: 10.1021/acs.accounts.7b00387

    125. [125]

      K. Li, J. Yang, J. Gu, Acc. Chem. Res. 55 (2022) 2235–2247.  doi: 10.1021/acs.accounts.2c00262

    126. [126]

      X.T. Liu, S.S. Chen, S.M. Li, et al., CrystEngComm 22 (2020) 5941–5945.  doi: 10.1039/d0ce00798f

    127. [127]

      Y. Zhang, S. Yuan, G. Day, et al., Coord. Chem. Rev. 354 (2018) 28–45.

    128. [128]

      Y. Zhang, H. Xiao, R. Xiong, C.B. Huang, Sep. Purif. Technol. 324, (2023) 124513.

    129. [129]

      C. Chen, J. Li, F. Luo, et al., Analyst 149 (2024) 815–823.

    130. [130]

      D. Feng, T. Zhang, T. Zhong, et al., J. Mater. Chem. C 9 (2021) 16978–16984.  doi: 10.1039/d1tc03516a

    131. [131]

      X. Zhang, Q. Qu, A. Zhou, et al., Adv. Colloid Interface Sci. 299 (2022) 102568.

    132. [132]

      Z.S. Han, T.K. Sun, R.R. Liang, et al., J. Am. Chem. Soc. 146 (2024) 15446–15452.  doi: 10.1021/jacs.4c03728

    133. [133]

      L.B. Wang, J.J. Wang, E.L. Yue, et al., J. Solid State Chem. 309 (2022) 123026.

    134. [134]

      X. Xu, M. Ma, T. Sun, X. Zhao, L. Zhang, Biosensors 13 (2023) 435.

    135. [135]

      Z. Sun, Y. Liu, Y. Li, Spectroc. Acta A: Molec. Biomolec. Spectr. 139 (2015) 296–301.

    136. [136]

      X. Xu, Y. Guo, X. Wang, et al., Sens. Actuator. B: Chem. 260 (2018) 339–345.

    137. [137]

      Y. Fan, X. Cheng, G. Xue, J. Wu, Z. Huang, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 213 (2019) 210–217.  doi: 10.3390/v11030210

    138. [138]

      X.R. Wang, Z. Huang, J. Du, et al., Inorg. Chem. 57 (2018) 12885–12899.  doi: 10.1021/acs.inorgchem.8b02123

    139. [139]

      I. Ahmed, M.M.H. Mondol, M.J. Jung, G.H. Lee, S.H. Jhung, Coord. Chem. Rev. 475 (2023) 214912.

    140. [140]

      X.X. Dong, T.L. Chen, X.J. Kong, et al., Anal. Methods 16 (2024) 74–78.

    141. [141]

      S. Wang, Z. Wang, L. Zhang, et al., Food Chem. 374 (2022) 131712.

    142. [142]

      Xiong, Y. Chen, D. Yang, et al., Mater. Chem. Front. 6 (2022) 2944–2967.  doi: 10.1039/d2qm00557c

    143. [143]

      L.E. Kreno, J.T. Hupp, R.P. Van Duyne, Anal. Chem. 82 (2010) 8042–8046.  doi: 10.1021/ac102127p

    144. [144]

      Z. Li, J. Zi, X. Luan, et al., Adv. Funct. Mater. 33 (2023) 2303069.

    145. [145]

      Wang, Y. Tang, Y. Jin, ACS Catal. 9 (2019) 11502–11514.  doi: 10.1021/acscatal.9b03971

    146. [146]

      T. Lu, H. Liang, W. Cao, et al., J. Colloid Interface Sci. 608 (2022) 2860–2869.

    147. [147]

      T. Wu, G. Chen, J. Han, et al., J. Am. Chem. Soc. 145 (2023) 16498–16507.  doi: 10.1021/jacs.3c03029

    148. [148]

      Q. Qu, J. Zhang, X. Chen, et al., ACS Sustain. Chem. Eng. 9 (2021) 387–397.  doi: 10.1021/acssuschemeng.0c07514

    149. [149]

      Z. Zhang, B. Peng, X. Ouyang, et al., Sens. Actuator. B: Chem. 368 (2022) 132144.

    150. [150]

      J. Gao, W. Yang, R. Liu, et al., Appl. Surf. Sci. 655 (2024) 159523.

    151. [151]

      L. Zhang, Y. Sun, Z. Zhang, et al., Biosens. Bioelectron. 216 (2022) 114659.

    152. [152]

      K. He, Z. Li, L. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 26250–26260.  doi: 10.1021/acsami.9b06151

    153. [153]

      D.D. Kachhadiya, Z.V.P. Murthy, Environ. Sci. : Water Res. Technol. 9 (2023) 1512–1517.

    154. [154]

      Y. Wu, F. Ma, J. Zhen, J. Pan, Sep. Purif. Technol. 328 (2024) 125038.

    155. [155]

      A. Knebel, J. Caro, Nat. Nanotechnol. 17 (2022) 911–923.  doi: 10.1038/s41565-022-01168-3

    156. [156]

      Y. Ma, Z. Dong, M. You, et al., Chem. Commun. 55 (2019) 10146–10149.  doi: 10.1039/c9cc04851k

    157. [157]

      P. Yang, Z. Li, Z. Gao, et al., ACS Sustain. Chem. Eng. 7 (2019) 4158–4164.  doi: 10.1021/acssuschemeng.8b05764

    158. [158]

      Z. Lei, L. Hu, Z.H. Yu, et al., Inorg. Chem. Front. 8 (2021) 129–1296.

    159. [159]

      V.A. Gómez Andrade, W.O. Herrera Martínez, F. Redondo, et al., Appl. Mater. Today 22 (2021) 100915.

    160. [160]

      M. Huang, L. Wang, K. Pei, et al., Small 16 (2020) e2000158.

    161. [161]

      J. Liu, J. Yang, S. An, et al., J. Mater. Sci: Mater. Electron. 33 (2022) 14228–14239.  doi: 10.1007/s10854-022-08351-1

    162. [162]

      T. Ohata, A. Nomoto, T. Watanabe, et al., ACS Appl. Mater. Interfaces 13 (2021) 54570–54578.  doi: 10.1021/acsami.1c16180

    163. [163]

      L. Wang, S.R. Li, Y.Z. Chen, H.L. Jiang, Small 17 (2021) e2004481.

    164. [164]

      Y. Xiao, C. Chen, Y. Wu, et al., ACS Appl. Mater. Interfaces 14 (2022) 7192–7199.  doi: 10.1021/acsami.1c22781

    165. [165]

      Y. Tang, J. Chen, H. Wu, et al., Dyes Pigm. 172 (2020) 107798.

    166. [166]

      Y. Tang, H. Wu, J. Chen, et al., J. Cheng, Dyes Pigm. 167 (2019) 10–15.  doi: 10.3847/1538-4357/ab1484

    167. [167]

      X.Y. Xu, B. Yan, J. Mater. Chem. A: Mater. Energy Sustain. 5 (2017) 2215–2223.

    168. [168]

      Z. Zhai, J. Wang, Y. Sun, et al., Appl. Surf. Sci. 613 (2023) 155772.

    169. [169]

      I. Ortiz-Gómez, A. Salinas-Castillo, A.G. García, et al., Microchim. Acta 185 (2018) 47–48.

    170. [170]

      Q. Cao, Y. Xiao, N. Liu, et al., Sens. Actuator. B: Chem. 329 (2021) 129133.

    171. [171]

      X. Jiang, R. Fan, X. Zhou, et al., Dalton Trans. 50 (2021) 7554–7562.  doi: 10.1039/d1dt00889g

    172. [172]

      S. Liu, S. Shinde, J. Pan, et al., Chem. Eng. J. 324 (2017) 216–227.

    173. [173]

      Y.H. Zhong, Y. He, H.Q. Zhou, et al., J. Mater. Chem. C 9 (2021) 588–592.

    174. [174]

      X. Guo, L. Zhou, X. Liu, et al., Colloids Surf. B: Biointerfaces 229 (2023) 113455.

    175. [175]

      S. Meng, J. Liu, Y. Yang, S. Mao, Z. Li, Sci. Total Environ. 922 (2024) 171115.

    176. [176]

      Y.N. Wang, S.D. Wang, X.P. Chang, et al., ChemSelect 6 (2021) 968–973.  doi: 10.1002/slct.202004531

    177. [177]

      B. Zhao, Q. Yang, J.S. Wang, et al., New J. Chem. 45 (2021) 441–447.

    178. [178]

      X. Dong, Q. He, M. Li, et al., Dalton Trans. 5 (2021) 15567–15575.  doi: 10.1039/d1dt02839a

    179. [179]

      X. Fang, X. Wang, Y. Li, Q. Li, S. Mao, Anal. Chem. 95 (2023) 2436–2444.  doi: 10.1021/acs.analchem.2c04613

    180. [180]

      T. Ma, K. Li, J. Hu, et al., Inorg. Chem. 61 (2022) 14352–14360.  doi: 10.1021/acs.inorgchem.2c02135

    181. [181]

      X. Wang, Y. Yun, W. Sun, Z. Lu, X. Tao, Sens. Actuator. B: Chem. 353 (2022) 131143.

    182. [182]

      M.Y. Wen, C. Liu, Y.L. Rui, L. Fu, G.Y. Dong, J. Mol. Struct. 1267 (2022) 133560.

    183. [183]

      Y. Yang, X. Liu, B. Mu, et al., Biosens. Bioelectron. 257 (2024) 116330.

    184. [184]

      L. Yu, L. Feng, L. Xiong, et al., Nanoscale 13 (2021) 11188–11196.  doi: 10.1039/d1nr02036f

    185. [185]

      X.S. Li, J. Zhao, Z.H. Jiao, et al., Angew. Chem. Int. Ed. 63 (2024) e202401880.

    186. [186]

      X. Dong, D. Li, Y. Li, et al., CrystEngComm 24 (2022) 7157–7165.  doi: 10.1039/d2ce01079h

    187. [187]

      F. Wu, B. Wang, H. Guo, et al., Anal. Methods 15 (2023) 1168–1177.  doi: 10.1039/d2ay01893d

    188. [188]

      T. Xu, P. Xu, D. Zheng, H. Yu, X. Li, Anal. Chem. 88 (2016) 12234–12240.  doi: 10.1021/acs.analchem.6b03364

    189. [189]

      W. Zhang, W. Jia, J. Qin, et al., Inorg. Chem. 61 (2022) 11879–11885.  doi: 10.1021/acs.inorgchem.2c01634

    190. [190]

      L. Wang, Y. Pan, Y. Wei, Z. Wang, X. Wei, Food Chem. 454 (2024) 139735.

    191. [191]

      A. Bieniek, A.P. Terzyk, M. Wiśniewski, et al., Prog. Mater Sci. 117 (2021) 100743.

    192. [192]

      S. Biswas, Q. Lan, C. Li, X.H. Xia, Anal. Chem, 94 (2022) 3013–3019.  doi: 10.1021/acs.analchem.1c05538

    193. [193]

      J. Du, F. Shi, K. Wang, et al., Trends Anal. Chem. 175 (2024) 117707.

    194. [194]

      J. Feng, J. Gao, W. Yang, et al., ACS Appl. Nano Mater. 6 (2023) 12775–12783.  doi: 10.1021/acsanm.3c01466

    195. [195]

      Z. Luo, Y. Wu, D. Qin, et al., Microchem. J. 191 (2023) 108883.

    196. [196]

      S. Mu, Y. Deng, Z. Xing, et al., ACS Appl. Mater. Interfaces 14 (2022) 56635–56643.  doi: 10.1021/acsami.2c18676

    197. [197]

      Y.L. Balachandran, X. Li, X. Jiang, Nano Lett. 21 (2021) 1335–1344.  doi: 10.1021/acs.nanolett.0c04053

    198. [198]

      J.Q. Zhao, Y. Kan, Z. Chen, H.M. Li, W.F. Zhang, Biosensors 13(2023), 284.  doi: 10.3390/bios13020284

    199. [199]

      L. Jiang, C. Li, X. Hou, Talanta 274 (2024) 126039.

    200. [200]

      S. Norouzi, K. Dashtian, F. Amourizi, R. Zare-Dorabei, Analyst 148 (2023) 3379–3391.  doi: 10.1039/d3an00865g

    201. [201]

      Y.F. Xia, H.Q. Yuan, C. Qiao, et al., J. Hazard. Mater. 465 (2024) 133386.

    202. [202]

      R. Zhao, W. Lu, X. Chai, et al., Anal. Chim. Acta 1298 (2024) 342403.

    203. [203]

      C. Gong, Z. Li, G. Liu, R. Wang, S. Pu, Spectroc. Acta A: Molec. Biomolec. Spectr. 265 (2022) 120362.

    204. [204]

      H. Cai, W. Lu, C. Yang, et al., Adv. Opt. Mater. 7 (2019) 1801149.

    205. [205]

      L.H. Cao, H.Y. Li, H. Xu, Y.L. Wei, S.Q. Zang, Dalton Trans. 46 (2017) 11656–11663.

    206. [206]

      B. Gui, X. Liu, G. Yu, et al., CCS Chem. 3 (2020) 2054–2062.

    207. [207]

      X. Liang, H.L. Xia, J. Xiang, et al., Adv. Sci. 11 (2024) 2307476.

    208. [208]

      H.X. Liu, D.H. Si, M.F. Smith, et al., Aggregate 4 (2023) e383.

    209. [209]

      F. Wang, Z. Li, X. Zhang, et al., Chem. Commun. 57 (2021) 7826–7829.  doi: 10.1039/d1cc02670d

    210. [210]

      A. Khatun, D.K. Panda, N. Sayresmith, M.G. Walter, S. Saha, Inorg. Chem. 58 (2019) 12707–12715.  doi: 10.1021/acs.inorgchem.9b01595

    211. [211]

      K. Wang, E. Dong, M. Fang, W. Zhu, C. Li, J. Fluoresc. 32 (2022) 1099–1107.

    212. [212]

      G.C.H. Mo, C. Posner, E.A. Rodriguez, T. Sun, J. Zhang, Nat. Commun. 11 (2020) 1848–1849.

    213. [213]

      G. Li, S.L. Yang, W.S. Liu, et al., Inorg. Chem. Front. 8 (2021) 4828–4837.  doi: 10.1039/d1qi01079d

    214. [214]

      F.W. Steuber, J.J. Gough, E.A. Whelan, et al., Inorg. Chem. 59 (2020) 17244–17250.  doi: 10.1021/acs.inorgchem.0c02475

    215. [215]

      B. Gui, Y. Meng, Y. Xie, et al., Adv. Mater. 30 (2018) e1802329.

    216. [216]

      Z. Dou, J. Yu, Y. Cui, et al., J. Am. Chem. Soc. 136 (2014) 5527–5530.  doi: 10.1021/ja411224j

    217. [217]

      Y. Zhou, B. Yan, Nanoscale 7 (2015) 4063–4069.

    218. [218]

      H. Wei, W. Wang, X. Xie, et al., Polymer (Guildf) 275 (2023) 125927.

    219. [219]

      B. Mao, X. Zhao, Chem 76 (2022) 4967–4976.  doi: 10.1007/s11696-022-02220-1

    220. [220]

      N.F. Tyndall, T.H. Stievater, D.A. Kozak, et al., ACS Sens. 5 (2020) 831–836.  doi: 10.1021/acssensors.9b02513

    221. [221]

      A.K. Ojha, S.K. Srivastava, J. Koster, et al., J. Mol. Struct. 689 (2004) 127–135.

    222. [222]

      I.V. Fedorova, M.A. Krestyaninov, L.P. Safonova, Struct. Chem. 34 (2023) 879–890.  doi: 10.1007/s11224-022-02042-7

    223. [223]

      S. Wu, Z. Sun, Y. Peng, et al., Biosens. Bioelectron. 169 (2020) 112613.

    224. [224]

      Y. Cai, Y. Hua, M. Yin, et al., Sens. Actuator. B: Chem. 302 (2020) 127198.

    225. [225]

      Yu, C. Liu, Y. Li, A. Huang, ACS Appl. Mater. Interfaces 11 (2019) 41972–41978.  doi: 10.1021/acsami.9b16529

    226. [226]

      X. Li, H. Zhou, F. Qi, et al., J. Mat. Chem. B 6 (2018) 6207–6211.  doi: 10.1039/c8tb02167h

    227. [227]

      L. Wang, Y. Ling, L. Han, et al., Anal. Chim. Acta 1131 (2020) 118–125.

    228. [228]

      X. Ma, J. Zhang, C. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 40070–40078.  doi: 10.1021/acsami.1c09967

    229. [229]

      J. Xiao, L. Song, M. Liu, X. Wang, Z. Liu, Inorg. Chem. 59 (2020) 6390–6397.  doi: 10.1021/acs.inorgchem.0c00485

    230. [230]

      L. Song, J. Xiao, R. Cui, et al., Sens. Actuator. B: Chem. 336 (2021) 129753.

    231. [231]

      K. Wu, Y.L. Huang, J. Zheng, et al., Mater. Chem. Front. 5 (2021) 4300–4309.  doi: 10.1039/d1qm00211b

    232. [232]

      A.F. Yang, S.L. Hou, Y. Shi, et al., Inorg. Chem. 58 (2019) 6356–6362.  doi: 10.1021/acs.inorgchem.9b00562

    233. [233]

      G. Ji, T. Zheng, X. Gao, Z. Liu, Sens. Actuator. B: Chem. 284 (2019) 91–95.

    234. [234]

      C. Fan, B. Zhu, X. Zhang, et al., Inorg. Chem. 60 (2021) 6339–6348.  doi: 10.1021/acs.inorgchem.1c00017

    235. [235]

      T. Xia, Y. Wan, Y. Li, J. Zhang, Inorg. Chem. 59 (2020) 8809–8817.  doi: 10.1021/acs.inorgchem.0c00544

    236. [236]

      S.L. Qin, Y.Y. Sun, X.D. He, et al., RSC Adv. 11 (2021) 37584–37594.

    237. [237]

      J. Zhang, Y. Huang, D. Yue, et al., J. Mat. Chem. B 6 (2018) 5174–5180.  doi: 10.1039/c8tb01592a

    238. [238]

      X.Q. Wang, M. Zhang, X. Ma, et al., Spectroc. Acta Pt. A: Molec. Biomolec. Spectr. 279 (2022) 121346.

    239. [239]

      S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, et al., Appl. Organomet. Chem. 33 (2019) e5249.

    240. [240]

      S.Y. Zhang, W. Shi, P. Cheng, M.J. Zaworotko, J. Am. Chem. Soc. 137 (2015) 12203–12206.  doi: 10.1021/jacs.5b06929

    241. [241]

      N.N. Sun, B. Yan, Analyst 143 (2018) 2349–2355.  doi: 10.1039/c8an00425k

    242. [242]

      H. Shen, H. Shi, B. Feng, C. Ding, S. Yu, J. Mat. Chem. B 1 (2022) 3444–3451.  doi: 10.1039/d2tb00158f

    243. [243]

      K. Yi, H. Li, X. Zhang, L. Zhang, Inorg. Chem. 60 (2021) 3172–3180.  doi: 10.1021/acs.inorgchem.0c03312

    244. [244]

      Y. Du, X. Li, X. Lv, Q. Jia, ACS Appl. Mater. Interfaces 9 (2017) 30925–30932.  doi: 10.1021/acsami.7b09091

    245. [245]

      S. Ghosh, N. Nagarjun, S. Nandi, A. Dhakshinamoorthy, S. Biswas, J. Mater. Chem. C 1 (2022) 6717–6727.  doi: 10.1039/d2tc00022a

    246. [246]

      J. Cuan, H. Zhou, X. Huang, X. Cong, Y. Zhou, Small 20 (2024) 2305624.

    247. [247]

      P. George, P. Chowdhury, Microporous Mesoporous Mat. 288 (2019) 109591.

    248. [248]

      M. Zhao, Y. Li, X. Ma, M. Xia, Y. Zhang, Talanta 200 (2019) 293–299.

    249. [249]

      J. Yao, Z. Xie, X. Zeng, L. Wang, T. Yue, Sens. Actuator. B: Chem. 354 (2022) 130760.

    250. [250]

      M. Sha, W. Xu, Y. Wu, et al., Sens. Actuator. B: Chem. 366 (2022) 131927.

    251. [251]

      M. Runowski, D. Marcinkowski, K. Soler-Carracedo, et al., ACS Appl. Mater. Interfaces 15 (2023) 3244–3252.  doi: 10.1021/acsami.2c22571

    252. [252]

      C. Lin, Y. Du, S. Wang, L. Wang, Y. Song, Mater. Sci. Eng. C: Mater. Biol. Appl. 118 (2021) 111511.

    253. [253]

      S. Wu, Y. Lin, J. Liu, et al., Adv. Funct. Mater. 28 (2018) 1707169.

    254. [254]

      D. Yue, D. Zhao, J. Zhang, et al., Chem. Commun. 53 (2017) 11221–11224.

    255. [255]

      R. Xie, P. Yang, J. Liu, et al., Talanta 231 (2021) 122366.

    256. [256]

      S. Mukherjee, S. Ganguly, A. Chakraborty, A. Mandal, D. Das, A.C.S. Sustain. Chem. Eng. 7 (2019) 819–830.  doi: 10.1021/acssuschemeng.8b04429

    257. [257]

      Y. Zhao, Q. Wang, H. Wang, et al., Sens. Actuator. B: Chem. 334 (2021) 129610.

    258. [258]

      J. Chen, F. Xu, Q. Zhang, S. Li, X. Lu, Analyst 146 (2021) 6883–6892.  doi: 10.1039/d1an00894c

    259. [259]

      S.L. Zhang, L. Yu, P.C. Su, et al., Chem. Pap. 76 (2022) 4777–4786.  doi: 10.1007/s11696-022-02205-0

    260. [260]

      R.X. Li, W.J. Wang, E.S.M. El-Sayed, et al., Sens. Actuator. B: Chem. 330 (2021) 129314.

    261. [261]

      L. Liu, Q. Chen, J. Lv, et al., Inorg. Chem. 61 (2022) 8015–8021.  doi: 10.1021/acs.inorgchem.2c00754

    262. [262]

      Y.H. Xiao, Z.Z. Ma, X.X. Yang, et al., ACS Nano 17 (2023) 19136–19143.  doi: 10.1021/acsnano.3c05265

    263. [263]

      D. Zhao, X.H. Liu, Y. Zhao, et al., J. Mater. Chem. A 5 (2017) 15797–15807.

    264. [264]

      Q. Liu, J. Gao, Z. Zheng, et al., Talanta 203 (2019) 248–254.

    265. [265]

      Y.P. Jiang, X.H. Fang, Q. Wang, et al., Commun. Chem. 6 (2023) 96.

    266. [266]

      Y.P. Jiang, X.H. Fang, Y. Ni, et al., Chem. Eng. J. 479 (2024) 147232.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    4. [4]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    5. [5]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    6. [6]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    7. [7]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    8. [8]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    9. [9]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    10. [10]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    11. [11]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    14. [14]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    15. [15]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    16. [16]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    17. [17]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    18. [18]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    19. [19]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    20. [20]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

Metrics
  • PDF Downloads(0)
  • Abstract views(23)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return