Advances in design strategies and imaging applications of specific butyrylcholinesterase probes
-
* Corresponding authors.
E-mail addresses: 300630@njucm.edu.cn (Y. Chen), sunhaopeng@163.com (H. Sun).
Citation:
Tianyu Sun, Zhoujun Dong, Paul Michael Malugulu, Tengfei Zhen, Lei Wang, Yao Chen, Haopeng Sun. Advances in design strategies and imaging applications of specific butyrylcholinesterase probes[J]. Chinese Chemical Letters,
;2025, 36(7): 110451.
doi:
10.1016/j.cclet.2024.110451
S. Darvesh, D.A. Hopkins, C. Geula, Nat. Rev. Neurosci. 4 (2003) 131–138.
doi: 10.1038/nrn1035
M.E. Hasselmo, B.P. Anderson, J.M. Bower, J. Neurophysiol. 67 (1992) 1230–1246.
doi: 10.1152/jn.1992.67.5.1230
M. Sarter, J.P. Bruno, Brain Res. Rev. 23 (1997) 28–46.
J. Haam, J.L. Yakel, J. Neurochem. 142 (2017) 111–121.
doi: 10.1111/jnc.14052
R.A. Bekdash, Int. J. Mol. Sci. 22 (2021) 1273.
doi: 10.3390/ijms22031273
Z. Chen, J. Huang, S. Yang, F. Hong, Molecules 27 (2022) 1816.
doi: 10.3390/molecules27061816
N.H. Greig, T. Utsuki, Q. Yu, et al., Curr. Med. Res. Opin. 17 (2001) 159–165.
doi: 10.1185/0300799039117057
J.L. Sussman, M. Harel, F. Frolow, et al., Science 253 (1991) 872–879.
doi: 10.1126/science.1678899
D. Kaplan, A. Ordentlich, D. Barak, et al., Biochemistry 40 (2001) 7433–7445.
doi: 10.1021/bi010181x
A. Saxena, A.M. Redman, X. Jiang, et al., Biochemistry 36 (1997) 14642–14651.
doi: 10.1021/bi971425+
D.F. Garcia, T.G. Oliveira, G.A. Molfetta, et al., Genet. Mol. Biol. 34 (2011) 40–44.
doi: 10.1590/S1415-47572011000100008
D.A. Gorelick, Drug Alcohol Depend. 48 (1997) 159–165.
O. Lockridge, R.B. Jr. Norgren, R.C. Johnson, T.A. Blake, Chem. Res. Toxicol. 29 (2016) 1381–1392.
doi: 10.1021/acs.chemrestox.6b00228
A.J. Franjesevic, S.B. Sillart, J.M. Beck, et al., Chemistry (Easton) 25 (2019) 5337–5371.
doi: 10.1002/chem.201805075
M. Scheiner, M. Hoffmann, F. He, et al., J. Med. Chem. 64 (2021) 9302–9320.
doi: 10.1021/acs.jmedchem.1c00534
E.K. Perry, R.H. Perry, G. Blessed, B.E. Tomlinson, Neuropathol. Appl. Neurobiol. 4 (1978) 273–277.
doi: 10.1111/j.1365-2990.1978.tb00545.x
Q. Li, Y. Chen, S. Xing, et al., J. Med. Chem. 64 (2021) 6856–6876.
doi: 10.1021/acs.jmedchem.1c00167
R. Ghobadian, R. Esfandyari, H. Nadri, et al., Mol. Divers. 24 (2020) 211–223.
doi: 10.1007/s11030-019-09943-6
X. Lu, N. Qin, Y. Liu, et al., Eur. J. Med. Chem. 243 (2022) 114729.
C. Du, L. Wang, Q. Guan, et al., J. Med. Chem. 65 (2022) 11365–11387.
doi: 10.1021/acs.jmedchem.2c00944
R. Ullah, G. Ali, F. Subhan, et al., Int. Immunopharmacol. 100 (2021) 108083.
K. OzadaliSari, T. Tüylü Küçükkılınç, B. Ayazgok, et al., Bioorganic Chem. 72 (2017) 208–214.
doi: 10.1016/j.bioorg.2017.04.018
A.L. Guillozet, M.M. Mesulam, J.F. Smiley, D.C. Mash, Ann. Neurol. 42 (1997) 909–918.
doi: 10.1002/ana.410420613
D.R. DeBay, G.A. Reid, I.R. Macdonald, et al., Brain Res. 1671 (2017) 102–110.
doi: 10.1016/j.brainres.2017.07.009
I. Mateo, J. Llorca, J. Infante, et al., Eur. J. Neurol. 15 (2008) 219–222.
doi: 10.1111/j.1468-1331.2008.02059.x
M.W.D. Thorne, M.K. Cash, G.A. Reid, et al., Mol. Imaging Biol. 23 (2021) 127–138.
doi: 10.1007/s11307-020-01540-6
S. Darvesh, A.M. LeBlanc, I.R. Macdonald, et al., Chem. Biol. Interact. 187 (2010) 425–431.
doi: 10.1016/j.cbi.2010.01.037
M. Reale, F. De Angelis, M. Di Nicola, et al., Int. J. Mol. Sci. 13 (2012) 12656–12664.
doi: 10.3390/ijms131012656
M. Di Bari, M. Reale, M. Di Nicola, et al., Int. J. Mol. Sci. 17 (2016) 2009.
doi: 10.3390/ijms17122009
I.R. Pottie, E.A. Higgins, R.A. Blackman, et al., ACS Chem. Neurosci. 2 (2011) 151–159.
doi: 10.1021/cn100090g
M. Gok, C. Cicek, E. Bodur, J. Neurochem. 168 (2024) 381–385.
doi: 10.1111/jnc.15833
L. FurtadoAlle, L.V. Tureck, C.S. de Oliveira, et al., Chem. Biol. Interact. 383 (2023) 110680.
B. Li, E.G. Duysen, O. Lockridge, Chem. Biol. Interact. 175 (2008) 88–91.
doi: 10.1016/j.cbi.2008.03.009
V.P. Chen, Y. Gao, L. Geng, et al., Endocrinology 157 (2016) 3086–3095.
doi: 10.1210/en.2016-1166
V.P. Chen, Y. Gao, L. Geng, et al., Proc. Natl. Acad. Sci. 112 (2015) 2251–2256.
doi: 10.1073/pnas.1421536112
L.M. Schopfer, O. Lockridge, S. Brimijoin, Gen. Comp. Endocrinol. 224 (2015) 61–68.
M.G. Akimov, D.S. Kudryavtsev, E.V. Kryukova, et al., Biomolecules 10 (2020) 283.
doi: 10.3390/biom10020283
M. Gok, C. Cicek, S. Sari, E. Bodur, Biochimie 204 (2023) 127–135.
doi: 10.1016/j.biochi.2022.09.008
D. Wang, K.S. Tan, W. Zeng, et al., Life Sci. 293 (2022) 120336.
K. Dave, S. Katyare, J. Endocrinol. 175 (2002) 241–250.
doi: 10.1677/joe.0.1750241
A. Tvarijonaviciute, J.J. Ceron, M. Caldin, Vet. J. 192 (2012) 494–497.
V.P. Chen, Y. Gao, L. Geng, S. Brimijoin, Int. J. Obes. 41 (2017) 1413–1419.
doi: 10.1038/ijo.2017.123
S. ShenharTsarfaty, T. Bruck, E.R. Bennett, et al., J. Cell. Mol. Med. 15 (2011) 1747–1756.
doi: 10.1111/j.1582-4934.2010.01165.x
L. Turecky, V. Kupcova, M. Durfinova, E. Uhlikova, Bratisl. Med. J. 122 (2021) 689–694.
doi: 10.4149/bll_2021_110
O.O. Ogunkeye, A.I. Roluga, Pathophysiology 13 (2006) 91–93.
R. Yu, Y. Guo, Y. Dan, et al., BMC Med. Genet. 19 (2018) 58.
doi: 10.1186/s12881-018-0561-5
J. Liu, T. Tian, X. Liu, Z. Cui, J. Immunol. Res. 2022 (2022) 6051092.
doi: 10.1155/2022/6051092
M. Pohanka, Bratisl. Med. J. 114 (2013) 726–734.
doi: 10.4149/bll_2013_153
J. BaranowskaKortylewicz, Z.P. Kortylewicz, E.M. McIntyre, et al., J. Pediatr. Hematol. Oncol. 44 (2022) 293–304.
doi: 10.1097/mph.0000000000002285
K. Prabhu, Australas. Med. J. 4 (2011) 374–378.
doi: 10.4066/AMJ.2011.569
R. Kumar, S. Razab, K. Prabhu, et al., J. Cancer Res. Ther. 13 (2017) 367.
N. Poetsch, A. Sturdza, S. Aust, et al., Strahlenther. Onkol. 195 (2019) 430–440.
doi: 10.1007/s00066-019-01430-z
E.V. Klocker, D.A. Barth, J.M. Riedl, et al., Cancers (Basel) 12 (2020) 1154.
doi: 10.3390/cancers12051154
Y. Miao, N. He, J. Zhu, Chem. Rev. 110 (2010) 5216–5234.
doi: 10.1021/cr900214c
O. Holas, K. Musilek, M. Pohanka, K. Kuca, Expert Opin. Drug Discov. 7 (2012) 1207–1223.
doi: 10.1517/17460441.2012.729037
M. Pohanka, Int. J. Electrochem. Sci. 11 (2016) 7440–7452.
doi: 10.20964/2016.09.16
X. Zhang, C. Zhao, Y. Shu, J. -H. Wang, Anal. Chem. 91 (2019) 15866–15872.
doi: 10.1021/acs.analchem.9b04304
G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, Biochem. Pharmacol. 7 (1961) 88–95.
doi: 10.1016/0006-2952(61)90145-9
M. Pohanka, Talanta 119 (2014) 412–416.
S. Yang, Q. Sun, H. Xiong, et al., Chem. Commun. 53 (2017) 3952–3955.
doi: 10.1039/c7cc00577f
Z. Chen, X. Ren, X. Meng, et al., Biosens. Bioelectron. 44 (2013) 204–209.
X. Xu, Y. Cen, G. Xu, et al., Biosens. Bioelectron. 131 (2019) 232–236.
doi: 10.3390/pr7040232
J. Zhang, M. Wang, J. Liu, et al., J. Agric. Food Chem. 71 (2023) 11884–11891.
doi: 10.1021/acs.jafc.3c02902
M. Yang, J. Huang, J. Fan, et al., Chem. Soc. Rev. 49 (2020) 6800–6815.
doi: 10.1039/d0cs00348d
H. Feng, Q. Meng, H.T. Ta, R. Zhang, New J. Chem. 44 (2020) 12890–12896.
doi: 10.1039/d0nj02762f
J.L. Kolanowski, F. Liu, E.J. New, Chem. Soc. Rev. 47 (2018) 195–208.
doi: 10.1039/c7cs00528h
J.M. An, K.O. Jung, M.S. Oh, D. Kim, Dyes Pigments 215 (2023) 111267.
J. Zhou, H. Ma, Chem. Sci. 7 (2016) 6309–6315.
doi: 10.1039/c6sc02500e
S. Kang, S. Lee, W. Yang, et al., Org. Biomol. Chem. 14 (2016) 8815–8820.
H. -W. Liu, L. Chen, C. Xu, et al., Chem. Soc. Rev. 47 (2018) 7140–7180.
doi: 10.1039/c7cs00862g
S. Lushchekina, P. Masson, Toxicology 409 (2018) 91–102.
doi: 10.1016/j.tox.2018.07.020
X. Chen, L. Fang, J. Liu, C. Zhan, J. Phys. Chem. B 115 (2011) 1315–1322.
doi: 10.1021/jp110709a
S. Liu, H. Xiong, J. Yang, et al., ACS Sens. 3 (2018) 2118–2128.
doi: 10.1021/acssensors.8b00697
J. Ma, X. Lu, H. Zhai, et al., Talanta 219 (2020) 121278.
Y. Yang, L. Zhang, J. Wang, et al., Anal. Chem. 94 (2022) 13498–13506.
doi: 10.1021/acs.analchem.2c02627
L. Wang, T. Sun, T. Zhen, et al., J. Med. Chem. 67 (2024) 6793–6809.
doi: 10.1021/acs.jmedchem.4c00355
T. Cao, L. Zheng, L. Zhang, et al., Sens. Actuators B: Chem. 330 (2021) 129348.
Z. Yu, X. Li, X. Lu, Y. Guo, New J. Chem. 46 (2022) 12034–12040.
doi: 10.1039/d2nj01678h
Y. Yang, L. Zhang, J. Wang, et al., Dyes Pigments 206 (2022) 110596.
Q. Zhang, C. Fu, X. Guo, et al., ACS Sens. 6 (2021) 1138–1146.
doi: 10.1021/acssensors.0c02398
X. Liang, L. Zhang, B. Shi, et al., Talanta 220 (2020) 121433.
doi: 10.1016/j.talanta.2020.121433
W. Zhang, J. Zhang, C. Qin, et al., Anal. Chim. Acta 1235 (2022) 340540.
doi: 10.1016/j.aca.2022.340540
S. Zhang, D. Chen, L. Yan, et al., Microchem. J. 157 (2020) 105066.
L. Dai, Q. Zhang, Q. Ma, W. Lin, Coord. Chem. Rev. 489 (2023) 215193.
M. Zhu, F. Fan, Z. Zhao, et al., J. Mol. Liq. 296 (2019) 111832.
L. Yan, L. Tang, X. Wu, L. Li, Crit. Rev. Anal. Chem. (2024), doi.org/10.1080/10408347.2024.2354328.
doi: 10.1080/10408347.2024.2354328
W. Kang, M. Ma, L. Xu, et al., Anal. Chim. Acta 1282 (2023) 341932.
doi: 10.1016/j.aca.2023.341932
Y. Jiang, H. Cui, Q. Yu, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 308 (2024) 123801.
doi: 10.1016/j.saa.2023.123801
B. Yang, Y. He, X. Ding, et al., Dyes Pigments 229 (2024) 112295.
W. Wang, X. Chen, Y. Zhang, et al., Chemosensors 12 (2024) 100.
doi: 10.3390/chemosensors12060100
Z. Zhang, J. Li, B. Yang, et al., Talanta 279 (2024) 126587.
doi: 10.1016/j.talanta.2024.126587
H. Li, X. Li, C. Yan, et al., Front. Bioeng. Biotechnol. 12 (2024) 1387146.
doi: 10.3389/fbioe.2024.1387146
Z. Guo, J. Peng, Z. Zhou, et al., Anal. Methods. 16 (2024) 4054–4059.
doi: 10.1039/d4ay00662c
J. Xu, B. Zhang, Y. Zhang, et al., Talanta 253 (2023) 124037.
H. Dong, Y. Zhou, Y. Hao, et al., Biosens. Bioelectron. 165 (2020) 112402.
doi: 10.1016/j.bios.2020.112402
E. Lim, J. Ricci, M. Jung, Molecules 16 (2011) 9886–9899.
doi: 10.3390/molecules16129886
W. Li, R. Li, R. Chen, et al., Anal. Chem. 94 (2022) 7996–8004.
doi: 10.1021/acs.analchem.2c01048
H. Dong, L. Zhao, T. Wang, et al., Anal. Chem. 95 (2023) 8340–8347.
doi: 10.1021/acs.analchem.3c00974
L. Xu, M. Ma, J. Li, et al., Sens. Actuators B Chem. 394 (2023) 134432.
A. Acari, T. Almammadov, M. Dirak, et al., J. Mater. Chem. B 11 (2023) 68881–6888.
A.R. Lippert, ACS Cent. Sci. 3 (2017) 269–271.
doi: 10.1021/acscentsci.7b00107
Y. Gao, Y. Lin, T. Liu, et al., Chin. Chem. Lett. 30 (2019) 63–66.
S. Bai, S. Huang, T. Luo, et al., Chin. Chem. Lett. (2024), https://doi.org/10.1016/j.cclet.2024.110054.
doi: 10.1016/j.cclet.2024.110054
M.H. Lee, J.S. Kim, J.L. Sessler, Chem. Soc. Rev. 44 (2015) 4185–4191.
doi: 10.1039/c4cs00280f
Y. Qi, Y. Li, M. Tan, et al., Coord. Chem. Rev. 486 (2023) 215130.
X. Yang, C. Li, P. Li, Q. Fu, Theranostics 13 (2023) 2632–2656.
doi: 10.7150/thno.82323
R. Gui, H. Jin, X. Bu, et al., Coord. Chem. Rev. 383 (2019) 82–103.
B. Zhang, S. Qin, N. Wang, et al., Talanta 266 (2024) 124971.
doi: 10.1016/j.talanta.2023.124971
J. Xu, J. Pan, X. Jiang, et al., Biosens. Bioelectron. 77 (2016) 725–732.
Y. Cui, F. Chen, X. Yin, Biosens. Bioelectron. 135 (2019) 208–215.
doi: 10.1016/j.bios.2019.04.008
C. Wan, J. Li, J. Gao, et al., Dyes Pigments 197 (2022) 109874.
J. Luo, Z. Xie, J.W.Y. Lam, et al., Chem. Commun. (2001) 1740–1741.
D. Wang, H. Su, R.T.K. Kwok, et al., Chem. Sci. 9 (2018) 3685–3693.
doi: 10.1039/c7sc04963c
Y. Huang, J. Xing, Q. Gong, et al., Nat. Commun. 10 (2019) 169.
R. Hu, A. Qin, B.Z. Tang, Prog. Polym. Sci. 100 (2020) 101176.
Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Commun. (2009) 4332–4353.
doi: 10.1039/b904665h
C. Xiang, J. Xiang, X. Yang, et al., J. Mater. Chem. B 10 (2022) 4254–4260.
doi: 10.1039/d2tb00422d
J.F. Lamère, N. Saffon, I. Dos Santos, S. Fery-Forgues, Langmuir 26 (2010) 10210–10217.
doi: 10.1021/la100349d
R. Hu, S. Li, Y. Zeng, et al., Phys. Chem. Chem. Phys. 13 (2011) 2044–2051.
Y. Qian, S. Li, G. Zhang, et al., J. Phys. Chem. B 111 (2007) 5861–5868.
doi: 10.1021/jp070076i
M. Ikegami, T. Arai, J. Chem. Soc. Perkin Trans. 2 (2002) 1296–1301.
J. Ding, R. Xiao, A. Bi, et al., Chin. Chem. Lett. 34 (2023) 108273.
M. Liu, S. Zhong, B. Feng, et al., Chin. Chem. Lett. 34 (2023) 107940.
A.C. Sedgwick, L. Wu, H. Han, et al., Chem. Soc. Rev. 47 (2018) 8842–8880.
doi: 10.1039/c8cs00185e
Y. Li, D. Dahal, C.S. Abeywickrama, Y. Pang, ACS Omega 6 (2021) 6547–6553.
doi: 10.1021/acsomega.0c06252
B. Feng, Y. Zhu, J. Wu, et al., Chin. Chem. Lett. 32 (2021) 3057–3060.
X. Pei, Y. Fang, H. Gu, et al., Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 287 (2023) 122044.
doi: 10.1016/j.saa.2022.122044
W. Yuan, C. Wan, J. Zhang, et al., Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 297 (2023) 122719.
doi: 10.1016/j.saa.2023.122719
Z. Yu, Y. Ma, S. Xu, et al., Sens. Actuators B Chem. 410 (2024) 135662.
G. Chen, H. Feng, X. Jiang, et al., Anal. Chem. 90 (2018) 1643–1651.
doi: 10.1021/acs.analchem.7b02976
G. Chen, H. Feng, W. Xi, et al., Analyst 144 (2019) 559–566.
doi: 10.1039/c8an01808a
Th. Forster, Naturwissenschaften 33 (1946) 166–175.
W.R. Algar, N. Hildebrandt, S.S. Vogel, I.L. Medintz, Nat. Methods 16 (2019) 815–829.
doi: 10.1038/s41592-019-0530-8
C.D.F. Martins, M.M.M. Raposo, S.P.G. Costa, Proceedings 41 (2019) 34.
doi: 10.3390/ecsoc-23-06613
E.D. Matayoshi, G.T. Wang, G.A. Krafft, J. Erickson, Science 247 (1990) 954–958.
doi: 10.1126/science.2106161
A.A. Gershkovich, V.V. Kholodovych, J. Biochem. Biophys. Methods 33 (1996) 135–162.
doi: 10.1016/s0165-022x(96)00023-1
S. Grahn, D. Ullmann, H. -D. Jakubke, Anal. Biochem. 265 (1998) 225–231.
doi: 10.1006/abio.1998.2902
J. Guo, C. Xu, X. Li, S. Chen, PLoS ONE 9 (2014) e114124.
doi: 10.1371/journal.pone.0114124
D.L. Goulet, U. Fraaz, C.J. Zulich, et al., Anal. Biochem. 604 (2020) 113826.
Z. Bánóczi, A. Alexa, A. Farkas, et al., Bioconjug. Chem. 19 (2008) 1375–1381.
doi: 10.1021/bc800021y
M. Gong, C. Dai, S. Severance, et al., Catalysts 10 (2020) 1169.
doi: 10.3390/catal10101169
K. Blennow, H. Zetterberg, J. Intern. Med. 284 (2018) 643–663.
doi: 10.1111/joim.12816
Y.Y. Broza, X. Zhou, M. Yuan, et al., Chem. Rev. 119 (2019) 11761–11817.
doi: 10.1021/acs.chemrev.9b00437
J.D. Schiffman, P.G. Fisher, P. Gibbs, Am. Soc. Clin. Oncol. Educ. Book (2015) 57–65.
S. Wang, K. Zhang, S. Tan, et al., Mol. Cancer 20 (2021) 13.
T. Rehman, M.A. Shabbir, M. Inam-Ur-Raheem, et al., Food Sci. Nutr. 8 (2020) 4696–4707.
doi: 10.1002/fsn3.1818
M. Chen, C. Wang, Z. Ding, et al., ACS Cent. Sci. 8 (2022) 837–844.
doi: 10.1021/acscentsci.2c00387
L. Wu, A.C. Sedgwick, X. Sun, et al., Acc. Chem. Res. 52 (2019) 2582–2597.
doi: 10.1021/acs.accounts.9b00302
H. Niu, X. Mi, X. Hua, et al., Anal. Chim. Acta 1192 (2022) 339341.
A.C. Sedgwick, H.H. Han, J.E. Gardiner, et al., Chem. Sci. 9 (2018) 3672–3676.
doi: 10.1039/c8sc00733k
J.Z. Li, Y. Sun, C. Wang, et al., Anal. Chem. 91 (2019) 11946–11951.
doi: 10.1021/acs.analchem.9b02749
A. Romieu, Org. Biomol. Chem. 13 (2015) 1294–1306.
X. Zhao, J. Kang, Y.P. Shi, Anal. Chem. 94 (2022) 6574–6581.
doi: 10.1021/acs.analchem.2c00406
C. Liu, R. Zhang, W. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 8462–8472.
doi: 10.1021/jacs.8b13898
X. Yang, X. Han, Y. Zhang, et al., Anal. Chem. 92 (2020) 12002–12009.
doi: 10.1021/acs.analchem.0c02509
S. Yoo, M.S. Han, Chem. Commun. 55 (2019) 14574–14577.
doi: 10.1039/c9cc07737e
Z. Chen, C. Zhong, Neurosci. Bull. 30 (2014) 271–281.
doi: 10.1007/s12264-013-1423-y
D. Praticò, Trends Pharmacol. Sci. 29 (2008) 609–615.
T.S. Leyane, S.W. Jere, N.N. Houreld, Int. J. Mol. Sci. 23 (2022) 7273.
doi: 10.3390/ijms23137273
P. Zhang, C. Fu, H. Liu, et al., Anal. Chem. 93 (2021) 11337–11345.
doi: 10.1021/acs.analchem.1c02943
K. Pravalika, D. Sarmah, H. Kaur, et al., ACS Chem. Neurosci. 9 (2018) 421–430.
doi: 10.1021/acschemneuro.7b00462
Y.W. Yap, M. Whiteman, N.S. Cheung, Cell. Signal. 19 (2007) 219–228.
Y. Duan, S. Wang, F. Cao, et al., Ind. Eng. Chem. Res. 59 (2020) 992–999.
C.M.C. Andrés, J.M. Pérez de la Lastra, C.A. Juan, et al., Int. J. Mol. Sci. 23 (2022) 10735.
doi: 10.3390/ijms231810735
J. Cao, D.M. Jiang, X. Ren, et al., Dyes Pigments 146 (2017) 279–286.
F. Tian, Y. Jia, Y. Zhang, et al., Biosens. Bioelectron. 86 (2016) 68–74.
R.A. Maki, V.A. Tyurin, R.C. Lyon, et al., J. Biol. Chem. 284 (2009) 3158–3169.
doi: 10.1074/jbc.M807731200
S. Samanta, T. Govindaraju, ACS Chem. Neurosci. 10 (2019) 4847–4853.
doi: 10.1021/acschemneuro.9b00554
J. Guo, J. Sun, D. Liu, et al., Anal. Chem. 95 (2023) 16868–16876.
doi: 10.1021/acs.analchem.3c02634
S. Xing, Q. Li, B. Xiong, et al., Med. Res. Rev. 41 (2021) 858–901.
doi: 10.1002/med.21745
P. GómezRamos, M.A. Morán, Mol. Chem. Neuropathol. 30 (1997) 161–173.
Shuaige Bai , Shuai Huang , Ting Luo , Bin Feng , Yanpeng Fang , Feiyi Chu , Jie Dong , Wenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
Linfang Wang , Jing Liu , Minghao Ren , Wei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
Guangying Wang , Qinglong Qiao , Wenhao Jia , Yiyan Ruan , Kai An , Wenchao Jiang , Xuelian Zhou , Zhaochao Xu . Adaptive emission profile of transformable fluorescent probes as fingerprints: A typical application in distinguishing different surfactants. Chinese Chemical Letters, 2025, 36(5): 110130-. doi: 10.1016/j.cclet.2024.110130
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Ling-Ling Wu , Xiangchuan Meng , Qingyang Zhang , Xiaowan Han , Feiya Yang , Qinghua Wang , Hai-Yu Hu , Nianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663
Fukui Shen , Yuqing Zhang , Guoqing Luan , Kaixue Zhang , Zhenzhen Wang , Yunhao Luo , Yuanyuan Hou , Gang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646
Xingyu Ma , Yi-Xin Chen , Zi Ye , Chong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203
Zeyin Chen , Jiaju Shi , Yusheng Zhou , Peng Zhang , Guodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629
Kun Zou , Yihang Xiao , Jinyu Yang , Mingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497
Xuan Song , Teng Fu , Yajie Yang , Yahan Kuang , Xiuli Wang , Yu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699
Wei GAO , Meiqi SONG , Xuan REN , Jianliang BAI , Jing SU , Jianlong MA , Zhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912