Citation: Tianyu Sun, Zhoujun Dong, Paul Michael Malugulu, Tengfei Zhen, Lei Wang, Yao Chen, Haopeng Sun. Advances in design strategies and imaging applications of specific butyrylcholinesterase probes[J]. Chinese Chemical Letters, ;2025, 36(7): 110451. doi: 10.1016/j.cclet.2024.110451 shu

Advances in design strategies and imaging applications of specific butyrylcholinesterase probes

    * Corresponding authors.
    E-mail addresses: 300630@njucm.edu.cn (Y. Chen), sunhaopeng@163.com (H. Sun).
  • Received Date: 4 July 2024
    Revised Date: 8 September 2024
    Accepted Date: 11 September 2024
    Available Online: 12 September 2024

Figures(22)

  • Butyrylcholinesterase (BChE) is a pivotal enzyme that degrades the neurotransmitter acetylcholine, which is related to learning and memory, into choline and acetic acid. BChE activity is strongly associated with various diseases, including Alzheimer's disease, multiple sclerosis, diabetes, and lipid metabolism disorders. It also possesses pharmacological properties for combating cocaine addiction and detoxifying organophosphate poisoning. Given the significant importance of BChE in the biological and medical fields, detecting its activity and understanding its expression in the body are crucial for advancing related research. Herein, a brief review of recently reported specific fluorescence or chemiluminescence probes for quantifying and real-time monitoring BChE is provided. By utilizing unique recognition groups, these probes achieve highly selective identification of BChE and effectively resist interference from other biological factors. Probes demonstrate excellent performance in measuring BChE activity, screening BChE inhibitors, and locating BChE in cells and mice. These also offer strong technical support for early diagnosis, precise intervention, and effective treatment of diseases with pathological changes in BChE.
  • 加载中
    1. [1]

      S. Darvesh, D.A. Hopkins, C. Geula, Nat. Rev. Neurosci. 4 (2003) 131–138.  doi: 10.1038/nrn1035

    2. [2]

      M.E. Hasselmo, B.P. Anderson, J.M. Bower, J. Neurophysiol. 67 (1992) 1230–1246.  doi: 10.1152/jn.1992.67.5.1230

    3. [3]

      M. Sarter, J.P. Bruno, Brain Res. Rev. 23 (1997) 28–46.

    4. [4]

      J. Haam, J.L. Yakel, J. Neurochem. 142 (2017) 111–121.  doi: 10.1111/jnc.14052

    5. [5]

      R.A. Bekdash, Int. J. Mol. Sci. 22 (2021) 1273.  doi: 10.3390/ijms22031273

    6. [6]

      Z. Chen, J. Huang, S. Yang, F. Hong, Molecules 27 (2022) 1816.  doi: 10.3390/molecules27061816

    7. [7]

      N.H. Greig, T. Utsuki, Q. Yu, et al., Curr. Med. Res. Opin. 17 (2001) 159–165.  doi: 10.1185/0300799039117057

    8. [8]

      J.L. Sussman, M. Harel, F. Frolow, et al., Science 253 (1991) 872–879.  doi: 10.1126/science.1678899

    9. [9]

      D. Kaplan, A. Ordentlich, D. Barak, et al., Biochemistry 40 (2001) 7433–7445.  doi: 10.1021/bi010181x

    10. [10]

      A. Saxena, A.M. Redman, X. Jiang, et al., Biochemistry 36 (1997) 14642–14651.  doi: 10.1021/bi971425+

    11. [11]

      D.F. Garcia, T.G. Oliveira, G.A. Molfetta, et al., Genet. Mol. Biol. 34 (2011) 40–44.  doi: 10.1590/S1415-47572011000100008

    12. [12]

      D.A. Gorelick, Drug Alcohol Depend. 48 (1997) 159–165.

    13. [13]

      O. Lockridge, R.B. Jr. Norgren, R.C. Johnson, T.A. Blake, Chem. Res. Toxicol. 29 (2016) 1381–1392.  doi: 10.1021/acs.chemrestox.6b00228

    14. [14]

      A.J. Franjesevic, S.B. Sillart, J.M. Beck, et al., Chemistry (Easton) 25 (2019) 5337–5371.  doi: 10.1002/chem.201805075

    15. [15]

      M. Scheiner, M. Hoffmann, F. He, et al., J. Med. Chem. 64 (2021) 9302–9320.  doi: 10.1021/acs.jmedchem.1c00534

    16. [16]

      E.K. Perry, R.H. Perry, G. Blessed, B.E. Tomlinson, Neuropathol. Appl. Neurobiol. 4 (1978) 273–277.  doi: 10.1111/j.1365-2990.1978.tb00545.x

    17. [17]

      Q. Li, Y. Chen, S. Xing, et al., J. Med. Chem. 64 (2021) 6856–6876.  doi: 10.1021/acs.jmedchem.1c00167

    18. [18]

      R. Ghobadian, R. Esfandyari, H. Nadri, et al., Mol. Divers. 24 (2020) 211–223.  doi: 10.1007/s11030-019-09943-6

    19. [19]

      X. Lu, N. Qin, Y. Liu, et al., Eur. J. Med. Chem. 243 (2022) 114729.

    20. [20]

      C. Du, L. Wang, Q. Guan, et al., J. Med. Chem. 65 (2022) 11365–11387.  doi: 10.1021/acs.jmedchem.2c00944

    21. [21]

      R. Ullah, G. Ali, F. Subhan, et al., Int. Immunopharmacol. 100 (2021) 108083.

    22. [22]

      K. OzadaliSari, T. Tüylü Küçükkılınç, B. Ayazgok, et al., Bioorganic Chem. 72 (2017) 208–214.  doi: 10.1016/j.bioorg.2017.04.018

    23. [23]

      A.L. Guillozet, M.M. Mesulam, J.F. Smiley, D.C. Mash, Ann. Neurol. 42 (1997) 909–918.  doi: 10.1002/ana.410420613

    24. [24]

      D.R. DeBay, G.A. Reid, I.R. Macdonald, et al., Brain Res. 1671 (2017) 102–110.  doi: 10.1016/j.brainres.2017.07.009

    25. [25]

      I. Mateo, J. Llorca, J. Infante, et al., Eur. J. Neurol. 15 (2008) 219–222.  doi: 10.1111/j.1468-1331.2008.02059.x

    26. [26]

      M.W.D. Thorne, M.K. Cash, G.A. Reid, et al., Mol. Imaging Biol. 23 (2021) 127–138.  doi: 10.1007/s11307-020-01540-6

    27. [27]

      S. Darvesh, A.M. LeBlanc, I.R. Macdonald, et al., Chem. Biol. Interact. 187 (2010) 425–431.  doi: 10.1016/j.cbi.2010.01.037

    28. [28]

      M. Reale, F. De Angelis, M. Di Nicola, et al., Int. J. Mol. Sci. 13 (2012) 12656–12664.  doi: 10.3390/ijms131012656

    29. [29]

      M. Di Bari, M. Reale, M. Di Nicola, et al., Int. J. Mol. Sci. 17 (2016) 2009.  doi: 10.3390/ijms17122009

    30. [30]

      I.R. Pottie, E.A. Higgins, R.A. Blackman, et al., ACS Chem. Neurosci. 2 (2011) 151–159.  doi: 10.1021/cn100090g

    31. [31]

      M. Gok, C. Cicek, E. Bodur, J. Neurochem. 168 (2024) 381–385.  doi: 10.1111/jnc.15833

    32. [32]

      L. FurtadoAlle, L.V. Tureck, C.S. de Oliveira, et al., Chem. Biol. Interact. 383 (2023) 110680.

    33. [33]

      B. Li, E.G. Duysen, O. Lockridge, Chem. Biol. Interact. 175 (2008) 88–91.  doi: 10.1016/j.cbi.2008.03.009

    34. [34]

      V.P. Chen, Y. Gao, L. Geng, et al., Endocrinology 157 (2016) 3086–3095.  doi: 10.1210/en.2016-1166

    35. [35]

      V.P. Chen, Y. Gao, L. Geng, et al., Proc. Natl. Acad. Sci. 112 (2015) 2251–2256.  doi: 10.1073/pnas.1421536112

    36. [36]

      L.M. Schopfer, O. Lockridge, S. Brimijoin, Gen. Comp. Endocrinol. 224 (2015) 61–68.

    37. [37]

      M.G. Akimov, D.S. Kudryavtsev, E.V. Kryukova, et al., Biomolecules 10 (2020) 283.  doi: 10.3390/biom10020283

    38. [38]

      M. Gok, C. Cicek, S. Sari, E. Bodur, Biochimie 204 (2023) 127–135.  doi: 10.1016/j.biochi.2022.09.008

    39. [39]

      D. Wang, K.S. Tan, W. Zeng, et al., Life Sci. 293 (2022) 120336.

    40. [40]

      K. Dave, S. Katyare, J. Endocrinol. 175 (2002) 241–250.  doi: 10.1677/joe.0.1750241

    41. [41]

      A. Tvarijonaviciute, J.J. Ceron, M. Caldin, Vet. J. 192 (2012) 494–497.

    42. [42]

      V.P. Chen, Y. Gao, L. Geng, S. Brimijoin, Int. J. Obes. 41 (2017) 1413–1419.  doi: 10.1038/ijo.2017.123

    43. [43]

      S. ShenharTsarfaty, T. Bruck, E.R. Bennett, et al., J. Cell. Mol. Med. 15 (2011) 1747–1756.  doi: 10.1111/j.1582-4934.2010.01165.x

    44. [44]

      L. Turecky, V. Kupcova, M. Durfinova, E. Uhlikova, Bratisl. Med. J. 122 (2021) 689–694.  doi: 10.4149/bll_2021_110

    45. [45]

      O.O. Ogunkeye, A.I. Roluga, Pathophysiology 13 (2006) 91–93.

    46. [46]

      R. Yu, Y. Guo, Y. Dan, et al., BMC Med. Genet. 19 (2018) 58.  doi: 10.1186/s12881-018-0561-5

    47. [47]

      J. Liu, T. Tian, X. Liu, Z. Cui, J. Immunol. Res. 2022 (2022) 6051092.  doi: 10.1155/2022/6051092

    48. [48]

      M. Pohanka, Bratisl. Med. J. 114 (2013) 726–734.  doi: 10.4149/bll_2013_153

    49. [49]

      J. BaranowskaKortylewicz, Z.P. Kortylewicz, E.M. McIntyre, et al., J. Pediatr. Hematol. Oncol. 44 (2022) 293–304.  doi: 10.1097/mph.0000000000002285

    50. [50]

      K. Prabhu, Australas. Med. J. 4 (2011) 374–378.  doi: 10.4066/AMJ.2011.569

    51. [51]

      R. Kumar, S. Razab, K. Prabhu, et al., J. Cancer Res. Ther. 13 (2017) 367.

    52. [52]

      N. Poetsch, A. Sturdza, S. Aust, et al., Strahlenther. Onkol. 195 (2019) 430–440.  doi: 10.1007/s00066-019-01430-z

    53. [53]

      E.V. Klocker, D.A. Barth, J.M. Riedl, et al., Cancers (Basel) 12 (2020) 1154.  doi: 10.3390/cancers12051154

    54. [54]

      Y. Miao, N. He, J. Zhu, Chem. Rev. 110 (2010) 5216–5234.  doi: 10.1021/cr900214c

    55. [55]

      O. Holas, K. Musilek, M. Pohanka, K. Kuca, Expert Opin. Drug Discov. 7 (2012) 1207–1223.  doi: 10.1517/17460441.2012.729037

    56. [56]

      M. Pohanka, Int. J. Electrochem. Sci. 11 (2016) 7440–7452.  doi: 10.20964/2016.09.16

    57. [57]

      X. Zhang, C. Zhao, Y. Shu, J. -H. Wang, Anal. Chem. 91 (2019) 15866–15872.  doi: 10.1021/acs.analchem.9b04304

    58. [58]

      G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, Biochem. Pharmacol. 7 (1961) 88–95.  doi: 10.1016/0006-2952(61)90145-9

    59. [59]

      M. Pohanka, Talanta 119 (2014) 412–416.

    60. [60]

      S. Yang, Q. Sun, H. Xiong, et al., Chem. Commun. 53 (2017) 3952–3955.  doi: 10.1039/c7cc00577f

    61. [61]

      Z. Chen, X. Ren, X. Meng, et al., Biosens. Bioelectron. 44 (2013) 204–209.

    62. [62]

      X. Xu, Y. Cen, G. Xu, et al., Biosens. Bioelectron. 131 (2019) 232–236.  doi: 10.3390/pr7040232

    63. [63]

      J. Zhang, M. Wang, J. Liu, et al., J. Agric. Food Chem. 71 (2023) 11884–11891.  doi: 10.1021/acs.jafc.3c02902

    64. [64]

      M. Yang, J. Huang, J. Fan, et al., Chem. Soc. Rev. 49 (2020) 6800–6815.  doi: 10.1039/d0cs00348d

    65. [65]

      H. Feng, Q. Meng, H.T. Ta, R. Zhang, New J. Chem. 44 (2020) 12890–12896.  doi: 10.1039/d0nj02762f

    66. [66]

      J.L. Kolanowski, F. Liu, E.J. New, Chem. Soc. Rev. 47 (2018) 195–208.  doi: 10.1039/c7cs00528h

    67. [67]

      J.M. An, K.O. Jung, M.S. Oh, D. Kim, Dyes Pigments 215 (2023) 111267.

    68. [68]

      J. Zhou, H. Ma, Chem. Sci. 7 (2016) 6309–6315.  doi: 10.1039/c6sc02500e

    69. [69]

      S. Kang, S. Lee, W. Yang, et al., Org. Biomol. Chem. 14 (2016) 8815–8820.

    70. [70]

      H. -W. Liu, L. Chen, C. Xu, et al., Chem. Soc. Rev. 47 (2018) 7140–7180.  doi: 10.1039/c7cs00862g

    71. [71]

      S. Lushchekina, P. Masson, Toxicology 409 (2018) 91–102.  doi: 10.1016/j.tox.2018.07.020

    72. [72]

      X. Chen, L. Fang, J. Liu, C. Zhan, J. Phys. Chem. B 115 (2011) 1315–1322.  doi: 10.1021/jp110709a

    73. [73]

      S. Liu, H. Xiong, J. Yang, et al., ACS Sens. 3 (2018) 2118–2128.  doi: 10.1021/acssensors.8b00697

    74. [74]

      J. Ma, X. Lu, H. Zhai, et al., Talanta 219 (2020) 121278.

    75. [75]

      Y. Yang, L. Zhang, J. Wang, et al., Anal. Chem. 94 (2022) 13498–13506.  doi: 10.1021/acs.analchem.2c02627

    76. [76]

      L. Wang, T. Sun, T. Zhen, et al., J. Med. Chem. 67 (2024) 6793–6809.  doi: 10.1021/acs.jmedchem.4c00355

    77. [77]

      T. Cao, L. Zheng, L. Zhang, et al., Sens. Actuators B: Chem. 330 (2021) 129348.

    78. [78]

      Z. Yu, X. Li, X. Lu, Y. Guo, New J. Chem. 46 (2022) 12034–12040.  doi: 10.1039/d2nj01678h

    79. [79]

      Y. Yang, L. Zhang, J. Wang, et al., Dyes Pigments 206 (2022) 110596.

    80. [80]

      Q. Zhang, C. Fu, X. Guo, et al., ACS Sens. 6 (2021) 1138–1146.  doi: 10.1021/acssensors.0c02398

    81. [81]

      X. Liang, L. Zhang, B. Shi, et al., Talanta 220 (2020) 121433.  doi: 10.1016/j.talanta.2020.121433

    82. [82]

      W. Zhang, J. Zhang, C. Qin, et al., Anal. Chim. Acta 1235 (2022) 340540.  doi: 10.1016/j.aca.2022.340540

    83. [83]

      S. Zhang, D. Chen, L. Yan, et al., Microchem. J. 157 (2020) 105066.

    84. [84]

      L. Dai, Q. Zhang, Q. Ma, W. Lin, Coord. Chem. Rev. 489 (2023) 215193.

    85. [85]

      M. Zhu, F. Fan, Z. Zhao, et al., J. Mol. Liq. 296 (2019) 111832.

    86. [86]

      L. Yan, L. Tang, X. Wu, L. Li, Crit. Rev. Anal. Chem. (2024), doi.org/10.1080/10408347.2024.2354328.  doi: 10.1080/10408347.2024.2354328

    87. [87]

      W. Kang, M. Ma, L. Xu, et al., Anal. Chim. Acta 1282 (2023) 341932.  doi: 10.1016/j.aca.2023.341932

    88. [88]

      Y. Jiang, H. Cui, Q. Yu, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 308 (2024) 123801.  doi: 10.1016/j.saa.2023.123801

    89. [89]

      B. Yang, Y. He, X. Ding, et al., Dyes Pigments 229 (2024) 112295.

    90. [90]

      W. Wang, X. Chen, Y. Zhang, et al., Chemosensors 12 (2024) 100.  doi: 10.3390/chemosensors12060100

    91. [91]

      Z. Zhang, J. Li, B. Yang, et al., Talanta 279 (2024) 126587.  doi: 10.1016/j.talanta.2024.126587

    92. [92]

      H. Li, X. Li, C. Yan, et al., Front. Bioeng. Biotechnol. 12 (2024) 1387146.  doi: 10.3389/fbioe.2024.1387146

    93. [93]

      Z. Guo, J. Peng, Z. Zhou, et al., Anal. Methods. 16 (2024) 4054–4059.  doi: 10.1039/d4ay00662c

    94. [94]

      J. Xu, B. Zhang, Y. Zhang, et al., Talanta 253 (2023) 124037.

    95. [95]

      H. Dong, Y. Zhou, Y. Hao, et al., Biosens. Bioelectron. 165 (2020) 112402.  doi: 10.1016/j.bios.2020.112402

    96. [96]

      E. Lim, J. Ricci, M. Jung, Molecules 16 (2011) 9886–9899.  doi: 10.3390/molecules16129886

    97. [97]

      W. Li, R. Li, R. Chen, et al., Anal. Chem. 94 (2022) 7996–8004.  doi: 10.1021/acs.analchem.2c01048

    98. [98]

      H. Dong, L. Zhao, T. Wang, et al., Anal. Chem. 95 (2023) 8340–8347.  doi: 10.1021/acs.analchem.3c00974

    99. [99]

      L. Xu, M. Ma, J. Li, et al., Sens. Actuators B Chem. 394 (2023) 134432.

    100. [100]

      A. Acari, T. Almammadov, M. Dirak, et al., J. Mater. Chem. B 11 (2023) 68881–6888.

    101. [101]

      A.R. Lippert, ACS Cent. Sci. 3 (2017) 269–271.  doi: 10.1021/acscentsci.7b00107

    102. [102]

      Y. Gao, Y. Lin, T. Liu, et al., Chin. Chem. Lett. 30 (2019) 63–66.

    103. [103]

      S. Bai, S. Huang, T. Luo, et al., Chin. Chem. Lett. (2024), https://doi.org/10.1016/j.cclet.2024.110054.  doi: 10.1016/j.cclet.2024.110054

    104. [104]

      M.H. Lee, J.S. Kim, J.L. Sessler, Chem. Soc. Rev. 44 (2015) 4185–4191.  doi: 10.1039/c4cs00280f

    105. [105]

      Y. Qi, Y. Li, M. Tan, et al., Coord. Chem. Rev. 486 (2023) 215130.

    106. [106]

      X. Yang, C. Li, P. Li, Q. Fu, Theranostics 13 (2023) 2632–2656.  doi: 10.7150/thno.82323

    107. [107]

      R. Gui, H. Jin, X. Bu, et al., Coord. Chem. Rev. 383 (2019) 82–103.

    108. [108]

      B. Zhang, S. Qin, N. Wang, et al., Talanta 266 (2024) 124971.  doi: 10.1016/j.talanta.2023.124971

    109. [109]

      J. Xu, J. Pan, X. Jiang, et al., Biosens. Bioelectron. 77 (2016) 725–732.

    110. [110]

      Y. Cui, F. Chen, X. Yin, Biosens. Bioelectron. 135 (2019) 208–215.  doi: 10.1016/j.bios.2019.04.008

    111. [111]

      C. Wan, J. Li, J. Gao, et al., Dyes Pigments 197 (2022) 109874.

    112. [112]

      J. Luo, Z. Xie, J.W.Y. Lam, et al., Chem. Commun. (2001) 1740–1741.

    113. [113]

      D. Wang, H. Su, R.T.K. Kwok, et al., Chem. Sci. 9 (2018) 3685–3693.  doi: 10.1039/c7sc04963c

    114. [114]

      Y. Huang, J. Xing, Q. Gong, et al., Nat. Commun. 10 (2019) 169.

    115. [115]

      R. Hu, A. Qin, B.Z. Tang, Prog. Polym. Sci. 100 (2020) 101176.

    116. [116]

      Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Commun. (2009) 4332–4353.  doi: 10.1039/b904665h

    117. [117]

      C. Xiang, J. Xiang, X. Yang, et al., J. Mater. Chem. B 10 (2022) 4254–4260.  doi: 10.1039/d2tb00422d

    118. [118]

      J.F. Lamère, N. Saffon, I. Dos Santos, S. Fery-Forgues, Langmuir 26 (2010) 10210–10217.  doi: 10.1021/la100349d

    119. [119]

      R. Hu, S. Li, Y. Zeng, et al., Phys. Chem. Chem. Phys. 13 (2011) 2044–2051.

    120. [120]

      Y. Qian, S. Li, G. Zhang, et al., J. Phys. Chem. B 111 (2007) 5861–5868.  doi: 10.1021/jp070076i

    121. [121]

      M. Ikegami, T. Arai, J. Chem. Soc. Perkin Trans. 2 (2002) 1296–1301.

    122. [122]

      J. Ding, R. Xiao, A. Bi, et al., Chin. Chem. Lett. 34 (2023) 108273.

    123. [123]

      M. Liu, S. Zhong, B. Feng, et al., Chin. Chem. Lett. 34 (2023) 107940.

    124. [124]

      A.C. Sedgwick, L. Wu, H. Han, et al., Chem. Soc. Rev. 47 (2018) 8842–8880.  doi: 10.1039/c8cs00185e

    125. [125]

      Y. Li, D. Dahal, C.S. Abeywickrama, Y. Pang, ACS Omega 6 (2021) 6547–6553.  doi: 10.1021/acsomega.0c06252

    126. [126]

      B. Feng, Y. Zhu, J. Wu, et al., Chin. Chem. Lett. 32 (2021) 3057–3060.

    127. [127]

      X. Pei, Y. Fang, H. Gu, et al., Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 287 (2023) 122044.  doi: 10.1016/j.saa.2022.122044

    128. [128]

      W. Yuan, C. Wan, J. Zhang, et al., Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 297 (2023) 122719.  doi: 10.1016/j.saa.2023.122719

    129. [129]

      Z. Yu, Y. Ma, S. Xu, et al., Sens. Actuators B Chem. 410 (2024) 135662.

    130. [130]

      G. Chen, H. Feng, X. Jiang, et al., Anal. Chem. 90 (2018) 1643–1651.  doi: 10.1021/acs.analchem.7b02976

    131. [131]

      G. Chen, H. Feng, W. Xi, et al., Analyst 144 (2019) 559–566.  doi: 10.1039/c8an01808a

    132. [132]

      Th. Forster, Naturwissenschaften 33 (1946) 166–175.

    133. [133]

      W.R. Algar, N. Hildebrandt, S.S. Vogel, I.L. Medintz, Nat. Methods 16 (2019) 815–829.  doi: 10.1038/s41592-019-0530-8

    134. [134]

      C.D.F. Martins, M.M.M. Raposo, S.P.G. Costa, Proceedings 41 (2019) 34.  doi: 10.3390/ecsoc-23-06613

    135. [135]

      E.D. Matayoshi, G.T. Wang, G.A. Krafft, J. Erickson, Science 247 (1990) 954–958.  doi: 10.1126/science.2106161

    136. [136]

      A.A. Gershkovich, V.V. Kholodovych, J. Biochem. Biophys. Methods 33 (1996) 135–162.  doi: 10.1016/s0165-022x(96)00023-1

    137. [137]

      S. Grahn, D. Ullmann, H. -D. Jakubke, Anal. Biochem. 265 (1998) 225–231.  doi: 10.1006/abio.1998.2902

    138. [138]

      J. Guo, C. Xu, X. Li, S. Chen, PLoS ONE 9 (2014) e114124.  doi: 10.1371/journal.pone.0114124

    139. [139]

      D.L. Goulet, U. Fraaz, C.J. Zulich, et al., Anal. Biochem. 604 (2020) 113826.

    140. [140]

      Z. Bánóczi, A. Alexa, A. Farkas, et al., Bioconjug. Chem. 19 (2008) 1375–1381.  doi: 10.1021/bc800021y

    141. [141]

      M. Gong, C. Dai, S. Severance, et al., Catalysts 10 (2020) 1169.  doi: 10.3390/catal10101169

    142. [142]

      K. Blennow, H. Zetterberg, J. Intern. Med. 284 (2018) 643–663.  doi: 10.1111/joim.12816

    143. [143]

      Y.Y. Broza, X. Zhou, M. Yuan, et al., Chem. Rev. 119 (2019) 11761–11817.  doi: 10.1021/acs.chemrev.9b00437

    144. [144]

      J.D. Schiffman, P.G. Fisher, P. Gibbs, Am. Soc. Clin. Oncol. Educ. Book (2015) 57–65.

    145. [145]

      S. Wang, K. Zhang, S. Tan, et al., Mol. Cancer 20 (2021) 13.

    146. [146]

      T. Rehman, M.A. Shabbir, M. Inam-Ur-Raheem, et al., Food Sci. Nutr. 8 (2020) 4696–4707.  doi: 10.1002/fsn3.1818

    147. [147]

      M. Chen, C. Wang, Z. Ding, et al., ACS Cent. Sci. 8 (2022) 837–844.  doi: 10.1021/acscentsci.2c00387

    148. [148]

      L. Wu, A.C. Sedgwick, X. Sun, et al., Acc. Chem. Res. 52 (2019) 2582–2597.  doi: 10.1021/acs.accounts.9b00302

    149. [149]

      H. Niu, X. Mi, X. Hua, et al., Anal. Chim. Acta 1192 (2022) 339341.

    150. [150]

      A.C. Sedgwick, H.H. Han, J.E. Gardiner, et al., Chem. Sci. 9 (2018) 3672–3676.  doi: 10.1039/c8sc00733k

    151. [151]

      J.Z. Li, Y. Sun, C. Wang, et al., Anal. Chem. 91 (2019) 11946–11951.  doi: 10.1021/acs.analchem.9b02749

    152. [152]

      A. Romieu, Org. Biomol. Chem. 13 (2015) 1294–1306.

    153. [153]

      X. Zhao, J. Kang, Y.P. Shi, Anal. Chem. 94 (2022) 6574–6581.  doi: 10.1021/acs.analchem.2c00406

    154. [154]

      C. Liu, R. Zhang, W. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 8462–8472.  doi: 10.1021/jacs.8b13898

    155. [155]

      X. Yang, X. Han, Y. Zhang, et al., Anal. Chem. 92 (2020) 12002–12009.  doi: 10.1021/acs.analchem.0c02509

    156. [156]

      S. Yoo, M.S. Han, Chem. Commun. 55 (2019) 14574–14577.  doi: 10.1039/c9cc07737e

    157. [157]

      Z. Chen, C. Zhong, Neurosci. Bull. 30 (2014) 271–281.  doi: 10.1007/s12264-013-1423-y

    158. [158]

      D. Praticò, Trends Pharmacol. Sci. 29 (2008) 609–615.

    159. [159]

      T.S. Leyane, S.W. Jere, N.N. Houreld, Int. J. Mol. Sci. 23 (2022) 7273.  doi: 10.3390/ijms23137273

    160. [160]

      P. Zhang, C. Fu, H. Liu, et al., Anal. Chem. 93 (2021) 11337–11345.  doi: 10.1021/acs.analchem.1c02943

    161. [161]

      K. Pravalika, D. Sarmah, H. Kaur, et al., ACS Chem. Neurosci. 9 (2018) 421–430.  doi: 10.1021/acschemneuro.7b00462

    162. [162]

      Y.W. Yap, M. Whiteman, N.S. Cheung, Cell. Signal. 19 (2007) 219–228.

    163. [163]

      Y. Duan, S. Wang, F. Cao, et al., Ind. Eng. Chem. Res. 59 (2020) 992–999.

    164. [164]

      C.M.C. Andrés, J.M. Pérez de la Lastra, C.A. Juan, et al., Int. J. Mol. Sci. 23 (2022) 10735.  doi: 10.3390/ijms231810735

    165. [165]

      J. Cao, D.M. Jiang, X. Ren, et al., Dyes Pigments 146 (2017) 279–286.

    166. [166]

      F. Tian, Y. Jia, Y. Zhang, et al., Biosens. Bioelectron. 86 (2016) 68–74.

    167. [167]

      R.A. Maki, V.A. Tyurin, R.C. Lyon, et al., J. Biol. Chem. 284 (2009) 3158–3169.  doi: 10.1074/jbc.M807731200

    168. [168]

      S. Samanta, T. Govindaraju, ACS Chem. Neurosci. 10 (2019) 4847–4853.  doi: 10.1021/acschemneuro.9b00554

    169. [169]

      J. Guo, J. Sun, D. Liu, et al., Anal. Chem. 95 (2023) 16868–16876.  doi: 10.1021/acs.analchem.3c02634

    170. [170]

      S. Xing, Q. Li, B. Xiong, et al., Med. Res. Rev. 41 (2021) 858–901.  doi: 10.1002/med.21745

    171. [171]

      P. GómezRamos, M.A. Morán, Mol. Chem. Neuropathol. 30 (1997) 161–173.

  • 加载中
    1. [1]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    2. [2]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    3. [3]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    4. [4]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    5. [5]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    6. [6]

      Guangying WangQinglong QiaoWenhao JiaYiyan RuanKai AnWenchao JiangXuelian ZhouZhaochao Xu . Adaptive emission profile of transformable fluorescent probes as fingerprints: A typical application in distinguishing different surfactants. Chinese Chemical Letters, 2025, 36(5): 110130-. doi: 10.1016/j.cclet.2024.110130

    7. [7]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    8. [8]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    9. [9]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    10. [10]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    11. [11]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    12. [12]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    13. [13]

      Fukui ShenYuqing ZhangGuoqing LuanKaixue ZhangZhenzhen WangYunhao LuoYuanyuan HouGang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646

    14. [14]

      Xingyu MaYi-Xin ChenZi YeChong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203

    15. [15]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    16. [16]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    17. [17]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    18. [18]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    19. [19]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    20. [20]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return