Citation: Jianju Li, Xinwei Chen, Yang Yu, Hao Ma, Xinhui Xia, Zixuan Zhao, Junqiu Jiang, Qingliang Zhao, Yingzi Lin, Liangliang Wei. Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors[J]. Chinese Chemical Letters, ;2025, 36(7): 110410. doi: 10.1016/j.cclet.2024.110410 shu

Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors

  • Corresponding author: Liangliang Wei, weill333@163.com
  • Received Date: 23 April 2024
    Revised Date: 6 August 2024
    Accepted Date: 4 September 2024
    Available Online: 4 September 2024

Figures(6)

  • Strict regulations on heavy metal (HM) limits impede the sludge land utilization for carbon emission reduction. This study aimed to evaluate the impact of bioavailable HMs (Cd, Cu, and Zn) on soil nitrification and determine toxicity thresholds via two cycles of sludge land application tests over 185 days. HMs inhibited gene abundance in their labile fractions, with the most affected being nitrite-oxidizing bacteria (NOB)-nxrB, followed by ammonia-oxidizing bacteria (AOB)-amoA, NOB-nxrA, and ammonia oxidizing archaea (AOA)-amoA. Toxicity thresholds for incremental labile fractions of HMs (in mg/kg) were determined as 0.35 for Cd, 21.73 for Cu, and 84.04 for Zn. Additionally, AOB, as the core nitrifiers, significantly correlated (P < 0.05) with ammonia nitrogen, soil organic matter, total phosphorus, and total potassium, playing a pivotal role in maintaining intricate interactions within HMs-spiked sludge-treated soil systems. The acute toxicity effects of HMs on potential ammonia oxidation (PAO), measured by inhibition rates, were 77.04%, 73.63%, and 67.06% for Cd, Cu, and Zn, with labile fractions contributing 33.79%, 40.19%, and 28.37%, respectively. Long-term sludge land application revealed chronic toxicity of HMs to PAO through the reshaping of ammonia-oxidizing microorganisms, particularly Cu and Zn. These findings provide insights into HM toxicity thresholds and their impact on nitrification, supporting sustainable sludge land management.
  • 加载中
    1. [1]

      X. Li, S. Yuan, C. Cai, et al., Environ. Pollut. 341 (2024) 122907.

    2. [2]

      A. Pathak, M.G. Dastidar, T.R. Sreekrishnan, J. Environ. Manag. 90 (2009) 2343–2353.

    3. [3]

      K. Qin, L. Wei, J. Li, et al., Chin. Chem. Lett. 31 (2020) 2603–2613.

    4. [4]

      J. Zhang, Z. Liu, B. Tian, et al., J. Hazard. Mater. 441 (2023) 129891.

    5. [5]

      V. Kapoor, X. Li, M. Elk, et al., Environ. Sci. Technol. 49 (2015) 13454–13462.  doi: 10.1021/acs.est.5b02748

    6. [6]

      L. Wei, F. Zhu, Q. Li, et al., Environ. Int. 144 (2020) 106093.

    7. [7]

      H. Yesil, R. Molaey, B. Calli, A.E. Tugtas, Water Res. 201 (2021) 117303.

    8. [8]

      Y. Xu, Y. Feng, Pol. J. Environ. Stud. 25 (2016) 405–412.  doi: 10.15244/pjoes/60861

    9. [9]

      J. Jia, J. Bai, R. Xiao, et al., Sci. Total Environ. 807 (2022) 151725.

    10. [10]

      L. Li, Y. Ling, H. Wang, et al., Chin. Chem. Lett. 31 (2020) 28–38.  doi: 10.5703/educationculture.36.1.0028

    11. [11]

      M. Kuypers, H.K. Marchant, B. Kartal, Nat. Rev. Microbiol. 16 (2018) 263–276.  doi: 10.1038/nrmicro.2018.9

    12. [12]

      B. Xi, H. Yu, Y. Li, et al., J. Hazard. Mater. 403 (2021) 123853.

    13. [13]

      S. Tang, Y. Rao, S. Huang, et al., J. Environ. Manag. 326 (2023) 116641.

    14. [14]

      S. Cela, M.E. Sumner, Commun. Soil Sci. Plant Anal. 33 (2002) 19–30.

    15. [15]

      L. Lu, C. Chen, T. Ke, et al., Sci. Total Environ. 830 (2022) 154732.

    16. [16]

      H. He, H. Liu, T. Shen, et al., Geoderma. 321 (2018) 141–150.

    17. [17]

      Y. Wang, X. Zeng, Y. Zhang, et al. J. Environ. Sci. 127 (2023) 15–29.

    18. [18]

      J. Li, Y. Huang, Y. Hu, et al., J. Environ. Sci. 44 (2016) 131–140.  doi: 10.26599/jgse.2016.9280016

    19. [19]

      C. Yanez, J. Verdejo, H. Moya, et al., Chemosphere. 300 (2022) 134517.

    20. [20]

      X. Zhang, X. Zhang, L. Li, et al., Environ. Res. 204 (2022) 111941.

    21. [21]

      R. Dhanker, S. Chaudhary, S. Goyal, V.K. Garg, Environ. Technol. Innov. 23 (2021) 101642.

    22. [22]

      M.Z. Hashmi, Naveedullah, H. Shen, et al., Environ. Int. 64 (2014) 28–39.

    23. [23]

      S. Ruyters, J. Mertens, D. Springael, E. Smolders, Soil Biol. Biochem. 42 (2010) 766–772.

    24. [24]

      J. Song, Q. Shen, L. Wang, et al., Environ. Pollut. 243 (2018) 510–518.  doi: 10.3390/f9090510

    25. [25]

      H. Zhao, J. Lin, X. Wang, et al., Environ. Sci. Technol. 55 (2021) 14305–14315.  doi: 10.1021/acs.est.1c04409

    26. [26]

      A.E. Taylor, L.H. Zeglin, T.A. Wanzek, D.D. Myrold, P.J. Bottomley, ISME J. 6 (2012) 2024–2032.  doi: 10.1038/ismej.2012.51

    27. [27]

      Y. Geng, C. Zhang, Y. Zhang, et al., Sci. Pollut. Res. 28 (2021) 29146–29156.  doi: 10.1007/s11356-021-12762-8

    28. [28]

      S. Qin, H. Liu, Z. Nie, et al., Pedosphere. 30 (2020) 168–180.

    29. [29]

      J. Li, H. Ma, H. Yu, et al., J. Hazard. Mater. 466 (2024) 133552.

    30. [30]

      A. Tessier, P.G.C. Campbell, M. Bisson, Anal. Chem. 51 (1979) 844–851.  doi: 10.1021/ac50043a017

    31. [31]

      J. Li, H. Yang, K. Qin, et al., J. Hazard. Mater. 423 (2022) 126994.

    32. [32]

      Z. Cheng, J. Shi, Y. He, L. Wu, J. Xu, J. Hazard. Mater. 426 (2022) 128095.

    33. [33]

      S. Cipullo, B. Snapir, G. Prpich, P. Campo, F. Coulon, Chemosphere 215 (2019) 388–395.

    34. [34]

      T. Zeng, Y. Liang, Q. Dai, et al., Chin. Chem. Lett. 33 (2022) 5184–5188.

    35. [35]

      B. Wang, B. Huang, Y.B. Qi, W.Y. Hu, W.X. Sun, Chin. Chem. Lett. 23 (2012) 1287–1290.

    36. [36]

      G. Liu, Z. Yu, X. Liu, et al., J. Chem. 2020 (2020) 1–10.

    37. [37]

      J. Yang, Z. Guo, L. Jiang, et al., Ecotoxicol. Environ. Saf. 239 (2022) 113617.

    38. [38]

      G. Xueyuan, L.J. Evans, S.J. Barabash, Geochim. Cosmochim. Acta 74 (2010) 5718–5728.

    39. [39]

      H.B. Bradl, J. Colloid Interface Sci. 277 (2004) 1–18.

    40. [40]

      L. Mouni, L. Belkhiri, A. Bouzaza, J. Bollinger, Environ. Earth Sci. 75 (2016) 1–8.

    41. [41]

      H. Liu, Waste Manag. 56 (2016) 575–583.

    42. [42]

      M.M. Ali, A. Khanom, K. Nahar, et al., Environ. Contam. Toxicol. 106 (2021) 707–713.  doi: 10.1007/s00128-021-03112-y

    43. [43]

      D. Fan, S. Wang, Y. Guo, et al., Sci. Total Environ. 757 (2021) 143771.

    44. [44]

      P. Gong, S.D. Siciliano, S. Srivastava, C.W. Greer, G.I. Sunahara, Hum. Ecol. Risk Assess. 8 (2002) 1067–1081.  doi: 10.1080/1080-700291905828

    45. [45]

      Q. Wu, K. Huang, H. Sun, et al., J. Hazard. Mater. 343 (2018) 166–175.

    46. [46]

      T.S. Radniecki, R.L. Ely, Biotechnol. Bioeng. 99 (2008) 1085–1095.  doi: 10.1002/bit.21672

    47. [47]

      J.E. Coleman, Biochem. Biophys. Res. Commun. 60 (1974) 641.

    48. [48]

      T.S. Radniecki, L. Semprini, M.E. Dolan, Biotechnol. Bioeng. 104 (2009) 1004–1011.  doi: 10.1002/bit.22454

    49. [49]

      X. Zhao, J. Huang, J. Lu, Y. Sun, Ecotoxicol. Environ. Saf. 170 (2019) 218–226.

    50. [50]

      W. Longhua, C. Miaomiao, L. Zhu, et al., J. Soils Sediments 12 (2012) 531–541.

    51. [51]

      C.D.N.A. Tsadilas, T. Matsi, N. Barbayiannis, D. Dimoyiannis, Commun. Soil Sci. Plant Anal. 26 (1995) 2603–2619.  doi: 10.1080/00103629509369471

    52. [52]

      A. Charlton, R. Sakrabani, S. Tyrrel, C.M. Rivas, S.P. McGrath, et al., Environ. Pollut. 219 (2016) 1021–1035.

    53. [53]

      Y. Xing, Y.X. Si, C. Hong, Y. Li, Arch. Environ. Contam. Toxicol. 69 (2015) 20–31.  doi: 10.1007/s00244-015-0144-9

    54. [54]

      B. Shen, X. Wang, Y. Zhang, et al., Sci. Total Environ. 711 (2020) 135229.

    55. [55]

      J. Li, Y. Zheng, Y. Liu, et al., Microb. Ecol. 67 (2014) 931–941.  doi: 10.1007/s00248-014-0391-8

    56. [56]

      S. Cela, M.E. Sumner, Water Air Soil Pollut. 141 (2002) 91–104.

    57. [57]

      J. Mertens, K. Broos, S.A. Wakelin, et al., ISME J. 3 (2009) 916–923.  doi: 10.1038/ismej.2009.39

    58. [58]

      W. Qin, S.P. Wei, Y. Zheng, et al., Nat. Microbiol. 9 (2024) 524–536.  doi: 10.1038/s41564-023-01593-7

    59. [59]

      A. Ginawi, L. Wang, H. Wang, B. Yu, Y. Yunjun, PeerJ 8 (2020) e8256.  doi: 10.7717/peerj.8256

  • 加载中
    1. [1]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    2. [2]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    3. [3]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    4. [4]

      Xiaoqiang WangFangyuan ZhouYue LiuZhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420

    5. [5]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    6. [6]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    7. [7]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    8. [8]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    9. [9]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    10. [10]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    11. [11]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    12. [12]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    13. [13]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    14. [14]

      Yujuan ZhouKecheng Jie . Conformationally adaptive metal–organic cages for dynamic guest encapsulation. Chinese Chemical Letters, 2025, 36(6): 111007-. doi: 10.1016/j.cclet.2025.111007

    15. [15]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    16. [16]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    17. [17]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    18. [18]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    19. [19]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    20. [20]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return