Advancements in MXene-based nanohybrids for electrochemical water splitting
-
* Corresponding authors.
E-mail addresses: xianyunpeng@zju.edu.cn (X. Peng), yhou@zju.edu.cn (Y. Hou).
Citation:
Liwei Hou, Xianyun Peng, Siliu Lyu, Zhongjian Li, Bin Yang, Qinghua Zhang, Qinggang He, Lecheng Lei, Yang Hou. Advancements in MXene-based nanohybrids for electrochemical water splitting[J]. Chinese Chemical Letters,
;2025, 36(6): 110392.
doi:
10.1016/j.cclet.2024.110392
T.Y. Shuai, Q.N. Zhan, H.M. Xu, et al., Green Chem. 25 (2023) 1749–1789.
doi: 10.1039/d2gc04205c
K. Liu, H. Yang, Y. Jiang, et al., Nat. Commun. 14 (2023) 2424.
doi: 10.23919/ccc58697.2023.10240130
Y.J. Lei, Z.C. Yan, W.H. Lai, et al., Electrochem. Energy Rev. 3 (2020) 766–792.
doi: 10.1007/s41918-020-00079-y
H.T. Das, T.E. Balaji, S. Dutta, et al., Int. J. Energ. Res. 46 (2022) 8625–8656.
doi: 10.1002/er.7847
X. Bai, J. Guan, Chin. J. Catal. 43 (2022) 2057–2090.
doi: 10.1016/S1872-2067(21)64030-5
I. Dincer, C. Zamfirescu, Int. J. Hydrogen Energ. 37 (2012) 16266–16286.
doi: 10.1016/j.ijhydene.2012.02.133
S. Anantharaj, S. Noda, Small 16 (2019) 1905779.
M. Khan, A. Hussain, M.T. Saleh, et al., Coordin. Chem. Rev. 506 (2024) 215722.
doi: 10.1016/j.ccr.2024.215722
H. Liang, J. Liu, ChemCatChem 14 (2022) e202101375.
doi: 10.1002/cctc.202101375
B. You, M.T. Tang, C. Tsai, et al., Adv. Mater. 31 (2019) e1807001.
doi: 10.1002/adma.201807001
D. Guo, Q. Pan, T. Vietor, et al., J. Energ. Chem. 87 (2023) 518–539.
doi: 10.1016/j.jechem.2023.08.049
J. Ran, J. Zhang, J. Yu, et al., Chem. Soc. Rev. 43 (2014) 7787–7812.
doi: 10.1039/C3CS60425J
B. You, Y. Sun, Acc. Chem. Res. 51 (2018) 1571–1580.
doi: 10.1021/acs.accounts.8b00002
N. Danilovic, R. Subbaraman, K.C. Chang, et al., Angew. Chem. Int. Ed. 53 (2014) 14016–14021.
doi: 10.1002/anie.201406455
J. Yoon, J. Park, Y.J. Sa, et al., CrystEngComm 18 (2016) 6002–6007.
doi: 10.1039/C6CE00830E
L. Yang, M.B. Vukmirovic, D.K. Su, et al., J. Phys. Chem. C 117 (2013) 1748–1753.
doi: 10.1021/jp309990e
M.K. Debe, Nature, 486 (2012) 43–51.
doi: 10.1038/nature11115
H.A. Gasteiger, S.S. Kocha, B. Sompalli, et al., Appl. Catal. B: Environ. 56 (2005) 9–35.
doi: 10.1016/j.apcatb.2004.06.021
M. Khan, N. Shahzad, C. Xiong, et al., Diam. Relat. Mater. 61 (2016) 32–40.
doi: 10.1016/j.diamond.2015.11.007
M. Khan, A.A. Khurram, L. Tiehu, et al., Diam. Relat. Mater. 78 (2017) 58–66.
doi: 10.3390/electronics6030058
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science 341 (2013) 1502–1505.
doi: 10.1126/science.1241488
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
Y. Tong, P. Chen, L. Chen, et al., ChemSusChem 14 (2021) 2576–2584.
doi: 10.1002/cssc.202100720
M. Naguib, J. Halim, J. Lu, et al., J. Am. Chem. Soc. 135 (2013) 15966–15969.
doi: 10.1021/ja405735d
X. Sang, Y. Xie, M.W. Lin, et al., ACS Nano 10 (2016) 9193–9200.
doi: 10.1021/acsnano.6b05240
Y. Gogotsi, B. Anasori, ACS Nano 13 (2019) 8491–8494.
doi: 10.1021/acsnano.9b06394
Y.J. Kim, S.J. Kim, D. Seo, et al., Chem. Mater. 33 (2021) 6346–6355.
doi: 10.1021/acs.chemmater.1c01263
A. Alarawi, V. Ramalingam, J.H. He, Mater. Today Chem. 11 (2019) 1–23.
doi: 10.1016/j.mtchem.2018.10.004
G.H. Jeong, S.P. Sasikala, T. Yun, et al., Adv. Mater. 32 (2020) 1907006.
doi: 10.1002/adma.201907006
X. Li, Z. Huang, C. Zhi, Front. Mater. 6 (2019) 312.
doi: 10.3389/fmats.2019.00312
T.Y. Shuai, Q.N. Zhan, H.M. Xu, et al., Chem. Commun. 59 (2023) 3968–3999.
doi: 10.1039/d2cc06418a
C.E. Shuck, Y. Gogotsi, Chem. Eng. J. 401 (2020) 125786.
doi: 10.1016/j.cej.2020.125786
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.
doi: 10.1038/natrevmats.2016.98
B.M. Jun, S. Kim, J. Heo, et al., Nano Res. 12 (2018) 471–487.
Y. Sun, Y. Li, Chemosphere 271 (2021) 129578.1–129578.18.
doi: 10.1016/j.chemosphere.2021.129578
L. Chen, M. Wakeel, T. Ul Haq, et al., Environ. Sci. Nano 9 (2022) 3168–3205.
doi: 10.1039/d2en00340f
I. Ashraf, S. Ahmad, F. Nazir, et al., Int. J. Hydrogen Energ. 47 (2022) 27383–27396.
doi: 10.1016/j.ijhydene.2022.06.095
Y. Wu, W. Wei, R. Yu, et al., Adv. Funct. Mater. 32 (2022) 2110910.
doi: 10.1002/adfm.202110910
Y. Jiang, T. Sun, X. Xie, et al., ChemSusChem 12 (2019) 1368–1373.
doi: 10.1002/cssc.201803032
A. Patra, R. Samal, C.S. Rout, Catal. Today 424 (2023) 113853.
doi: 10.1016/j.cattod.2022.07.021
L.P. Hao, A. Hanan, R. Walvekar, et al., Catalysts 13 (2023) 802.
doi: 10.3390/catal13050802
Z. Lv, W. Ma, M. Wang, et al., Adv. Funct. Mater. 31 (2021) 2102576.
doi: 10.1002/adfm.202102576
A. Hanan, M.N. Lakhan, M.Y. Solangi, et al., Mater. Today Sustain. 24 (2023) 100585.
B. Zhang, J. Shan, X. Wang, et al., Small 18 (2022) e2200173.
doi: 10.1002/smll.202200173
Y. Xu, Z. Mao, J. Zhang, et al., Angew. Chem. Int. Ed. (63) (2024) e202316029.
A.Gilbert Prince, L. Durai, S. Badhulika, FlatChem 36 (2022) 100439.
doi: 10.1016/j.flatc.2022.100439
Y. Ye, X. Zeng, Y. Wang, et al., J. Adv. Ceram. 12 (2023) 553–564.
doi: 10.26599/JAC.2023.9220704
S.K. Raj, Kirti, V.Sharma, et al., Int. J. Hydrogen Energ. 48 (2023) 37732–37745.
doi: 10.1016/j.ijhydene.2022.11.093
K. Chaudhary, S. Zulfiqar, H.H. Somaily, et al., Electrochim. Acta. 431 (2022) 141103.
doi: 10.1016/j.electacta.2022.141103
M. Li, S. Zhou, R. Sun, et al., Fuel 358 (2024) 130256.
doi: 10.1016/j.fuel.2023.130256
X. Yu, L. Lin, C. Pei, et al., Chemistry (Easton) 30 (2023) e202303524.
X. Shi, M. Du, H.S. Jing, et al., Colloids Surf. A 679 (2023) 132638.
doi: 10.1016/j.colsurfa.2023.132638
M. Xu, J. Huang, X. Yue, et al., ACS Appl. Energ. Mater. 7 (2024) 2460–2468.
doi: 10.1021/acsaem.3c03270
N. Li, Y. Zhang, M. Jia, et al., Electrochimica. Acta. 326 (2019) 134976.
doi: 10.1016/j.electacta.2019.134976
X. Li, X. Lv, X. Sun, et al., App. Catal. B: Environ. 284 (2021) 19708.
doi: 10.1016/j.apcatb.2020.119708
C.F. Du, Q. Song, Q. Liang, et al., ChemNanoMat 7 (2021) 539–544.
doi: 10.1002/cnma.202100061
X. Zhao, W.P. Li, Y. Cao, et al., ACS Nano 18 (2024) 4256–4268.
doi: 10.1021/acsnano.3c09639
V. Ramalingam, P. Varadhan, H.C. Fu, et al., Adv. Mater. 31 (2019) e1903841.
doi: 10.1002/adma.201903841
S. Hussain, D. Vikraman, G. Nazir, et al., Nanomaterials 12 (2022) 2886.
doi: 10.3390/nano12162886
S. Han, Y. Chen, Y. Hao, et al., China Mater. 64 (2020) 1127–1138.
doi: 10.22251/jlcci.2020.20.20.1127
X. Peng, Y. Mi, X. Liu, et al., J. Mater. Chem. A 10 (2022) 6134–6145.
doi: 10.1039/d1ta07375c
X. Peng, H. Bao, J. Sun, et al., Nanoscale 13 (2021) 7134–7139.
doi: 10.1039/d1nr00795e
J. Zhang, E. Wang, S. Cui, et al., Nano Lett. 22 (2022) 1398–1405.
doi: 10.1021/acs.nanolett.1c04809
W. Lin, Y.R. Lu, W. Peng, et al., J. Mater. Chem. A 10 (2022) 9878–9885.
doi: 10.1039/d2ta00550f
A.Gilbert Prince, L. Durai, S. Badhulika, FlatChem 36 (2022) 100439.
doi: 10.1016/j.flatc.2022.100439
X. Zeng, Y. Ye, Y. Wang, et al., J. Adv. Ceram. 12 (2023) 553–564.
doi: 10.26599/jac.2023.9220704
Y. Cheng, J. Dai, Y. Song, et al., ACS App. Energ. Mater. 2 (2019) 6851–6859.
doi: 10.1021/acsaem.9b01329
X. Peng, S. Zhao, Y. Mi, et al., Small 16 (2020) e2002888.
doi: 10.1002/smll.202002888
C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43 (2014) 6555–6569.
doi: 10.1039/C3CS60468C
Y. Yan, B.Y. Xia, B. Zhao, et al., J. Mater. Chem. A 4 (2016) 17587–17603.
doi: 10.1039/C6TA08075H
N.T. Suen, S.F. Hung, Q. Quan, et al., Chem. Soc. Rev. 46 (2017) 337–365.
doi: 10.1039/C6CS00328A
I.C. Man, H.-Y. Su, F. Calle-Vallejo, et al., ChemCatChem 3 (2011) 1159–1165.
doi: 10.1002/cctc.201000397
J. Zhang, H.B. Yang, D. Zhou, B. Liu, Chem. Rev. 122 (2022) 17028–17072.
doi: 10.1021/acs.chemrev.1c01003
C. Lei, S. Lyu, J. Si, et al., ChemCatChem 11 (2019) 5855–5874.
doi: 10.1002/cctc.201901707
M. Gao, F. Wang, S. Yang, et al., Mater. Today 72 (2024) 318–358.
doi: 10.1016/j.mattod.2023.12.009
X. Li, Z. Huang, C.E. Shuck, et al., Nat. Rev. Chem. 6 (2022) 389–404.
doi: 10.1038/s41570-022-00384-8
J. Björk, J. Halim, J. Zhou, et al., npj 2D Mater. Appl. 7 (2023) 5.
doi: 10.1038/s41699-023-00370-8
Y. Wei, P. Zhang, R.A. Soomro, et al., Adv. Mater. 33 (2021) e2103148.
doi: 10.1002/adma.202103148
M. Han, K. Maleski, C.E. Shuck, et al., J. Am. Chem. Soc. 142 (2020) 19110–19118.
doi: 10.1021/jacs.0c07395
B. Anasori, Y. Xie, M. Beidaghi, et al., ACS Nano 9 (2015) 9507–9516.
doi: 10.1021/acsnano.5b03591
Q. Tao, M. Dahlqvist, J. Lu, et al., Nat. Commun. 8 (2017) 14949.
doi: 10.1038/ncomms14949
M. Shekhirev, C.E. Shuck, A. Sarycheva, et al., Prog. Mater. Sci. 120 (2021) 100757.
doi: 10.1016/j.pmatsci.2020.100757
V. Kamysbayev, A.S. Filatov, H. Hu, et al., Science 369 (2020) 979–983.
doi: 10.1126/science.aba8311
Y. Li, H. Shao, Z. Lin, et al., Nat. Mater. 19 (2020) 894–899.
doi: 10.1038/s41563-020-0657-0
S.G. Peera, R. Koutavarapu, L. Chao, et al., Micromachines (Basel) 13 (2022) 1499.
doi: 10.3390/mi13091499
R. Verma, A. Sharma, V. Dutta, et al., Emergent Mater. 7 (2023) 35–62.
doi: 10.4018/978-1-6684-8893-5.ch003
Z. Kang, M.A. Khan, Y. Gong, et al., J. Mater. Chem. A 9 (2021) 6089–6108.
doi: 10.1039/d0ta11735h
R.R. Raja Sulaiman, A. Hanan, W.Y. Wong, et al., Catalysts 12 (2022) 1576.
doi: 10.3390/catal12121576
Y. Wen, Z. Wei, C. Ma, et al., Nanomaterials 9 (2019) 775.
doi: 10.3390/nano9050775
Y. Jiang, X. Wu, Y. Yan, et al., Small, 15 (2019) 1805474.
doi: 10.1002/smll.201805474
L. Zhang, D. Ye, Q.A. Huang, et al., J. Electrochem. Soc. 167 (2020) 1–14.
Y. Zheng, Y. Liu, X. Guo, et al., J. Mater. Sci. Technol. 41 (2020) 117–126.
doi: 10.1016/j.jmst.2019.09.018
V. Ramalingam, P. Varadhan, H.C. Fu, et al., Adv. Mater. 31 (2019) 1903841.
doi: 10.1002/adma.201903841
B. Abdollahi, A. Najafidoust, E.Abbasi Asl, et al., Arabian J. Chem. 14 (2021) 103444.
doi: 10.1016/j.arabjc.2021.103444
A. Hanan, M.N. Lakhan, M.Y. Solangi, et al., Mater. Today Sustain. 24 (2023) 100585.
Y. Yang, X. Huang, C. Sheng, et al., J. Alloys Compd. 920 (2022) 165908.
doi: 10.1016/j.jallcom.2022.165908
Y. Tang, C. Yang, M. Sheng, et al., ACS Sustain. Chem. Eng. 8 (2020) 12990–12998.
doi: 10.1021/acssuschemeng.0c03840
C.F. Du, X. Sun, H. Yu, et al., Adv. Sci. 6 (2019) 1900116.
doi: 10.1002/advs.201900116
K. Wang, H. Du, S. He, et al., Adv. Mater. 33 (2021) 2005587.
doi: 10.1002/adma.202005587
X. Zheng, X. Han, Y. Cao, et al., Adv. Mater. 32 (2020) 2000607.
doi: 10.1002/adma.202000607
J. Li, C. Chen, Z. Lv, et al., J. Mater. Sci. Technol. 145 (2023) 74–82.
doi: 10.1117/12.2649479
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energ. 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
M.S. Burke, M.G. Kast, L. Trotochaud, et al., J. Am. Chem. Soc. 137 (2015) 3638–3648.
doi: 10.1021/jacs.5b00281
Y. Pan, R. Lin, Y. Chen, et al., J. Am. Chem. Soc. 140 (2018) 4218–4221.
doi: 10.1021/jacs.8b00814
L. Cao, Q. Luo, W. Liu, et al., Nat. Catal. 2 (2019) 134–141.
Z. Chen, X. Fan, Z. Shen, et al., ChemCatChem 12 (2020) 4059–4066.
doi: 10.1002/cctc.202000591
Z. Fu, G. Hai, X.X. Ma, et al., J. Energ. Chem. 98 (2024) 663–669.
doi: 10.1016/j.jechem.2024.07.014
H. Su, S. Song, S. Li, et al., App. Catal. B: Environ. 293 (2021) 120225.
doi: 10.1016/j.apcatb.2021.120225
L. Zhang, Y. Jia, G. Gao, et al., Chem 4 (2018) 285–297.
doi: 10.1016/j.chempr.2017.12.005
X. Zhao, X. Zheng, Q. Lu, et al., EcoMat 5 (2023) e12293.
doi: 10.1002/eom2.12293
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Chupeng Luo , Keying Su , Shan Yang , Yujia Liang , Yawen Tang , Xiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940