Citation: Xiaokang Hou, Huanxin Ma, Mengmeng Zhao, Chunhua Feng, Shishu Zhu. Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid[J]. Chinese Chemical Letters, ;2025, 36(7): 110332. doi: 10.1016/j.cclet.2024.110332 shu

Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid

    * Corresponding author.
    E-mail address: zhushishu@scut.edu.cn (S. Zhu).
  • Received Date: 5 May 2024
    Revised Date: 7 July 2024
    Accepted Date: 9 August 2024
    Available Online: 11 August 2024

Figures(5)

  • Light exposure can accelerate phase transformation of Schwertmannite (Sch) coexisting with low-molecular-weight organic acids (LMWOAs), affecting the cycling of Fe in acid mine drainage (AMD). However, it is still unclear how this process relates to the fate of heavy metal contaminants. The study comprehensively reports the significant role and speciation redistribution of Cu(Ⅱ) during the photochemical transformation of a Sch/tartaric acid (TA) system. Based on X-ray diffractometer and Fourier transform infrared spectra results, the presence of TA in simulated AMD significantly promoted photoreductive dissolution and phase transformation of Sch to magnetite (Mt) and goethite (Gt) under anoxic and oxic conditions, respectively. With the addition of 10–30 mg/L Cu(Ⅱ), this transformation of Sch/TA system was significantly inhibited, i.e., only Gt occurred as product under anoxic conditions and even no phase transformation under oxic conditions. The results of EPR and adsorbed Fe(Ⅱ) indicated that the coexistence of Cu(Ⅱ) suppressed the amount of adsorbed Fe(Ⅱ) available for the transformation of Sch via competitive adsorption with Fe(Ⅱ) and inhibition of ligand-to-metal charge transfer (LMCT) of Sch-TA complexes. Chemical speciation and X-ray photoelectron spectroscopy analysis revealed the proportions of adsorbed and structural Cu(Ⅱ) of Sch/TA system were observably enhanced due to an increase in pH and recrystallization/nucleation growth of newly formed Gt. Under anoxic conditions, 62.7%-75.88% of Cu(Ⅱ) was adsorbed on the mineral surface, and during the nucleation and growth of secondary mineral phases, 15.49%-17.01% of Cu(Ⅱ) was incorporated into their crystal structure. The changes in distribution of Cu(Ⅱ) further suggested the photochemical transformation of Sch facilitated the sequestration of heavy metals and reduced their bioavailability. These findings enhance the understanding of role and redistribution of Cu(Ⅱ) during the transformation of Sch/LMWOA system in euphotic zone of AMD and provid insights of exploring engineered strategies of AMD remediation.
  • 加载中
    1. [1]

      S. Regenspurg, A. Brand, S. Peiffer, Geochim. Cosmochim. Acta 68 (2004) 1185–1197.

    2. [2]

      J.M. Bigham, L. Carlson, E. Murad, Mineral. Mag. 58 (1994) 641–648.  doi: 10.1180/minmag.1994.058.393.14

    3. [3]

      E.D. Burton, R.T. Bush, L.A. Sullivan, S.G. Johnston, R.K. Hocking, Chem. Geol. 253 (2008) 64–73.

    4. [4]

      E.D. Burton, R.T. Bush, L.A. Sullivan, D.R.G. Mitchell, Geochim. Cosmochim. Acta 72 (2008) 4551–4564.

    5. [5]

      R.S. Cutting, V.S. Coker, N.D. Telling, et al., Environ. Sci. Technol. 46 (2012) 12591–12599.  doi: 10.1021/es204596z

    6. [6]

      K.H. Knorr, C. Blodau, Environ. Sci. Technol. 40 (2006) 2944–2950.  doi: 10.1021/es051874u

    7. [7]

      A. Sheng, J. Liu, X. Li, et al., Geochim. Cosmochim. Acta 309 (2021) 272–285.

    8. [8]

      J. Liu, A. Sheng, X. Li, et al., Environ. Sci. Technol. 56 (2022) 3801–3811.  doi: 10.1021/acs.est.1c08044

    9. [9]

      A.G.B. Williams, M.M. Scherer, Environ. Sci. Technol. 38 (2004) 4782–4790.

    10. [10]

      C. Li, X. Yi, Z. Dang, et al., Chemosphere 144 (2016) 2065–2072.

    11. [11]

      B. Jiang, Y. Gong, J. Gao, et al., J. Hazard. Mater. 365 (2019) 205–226.

    12. [12]

      B. Dold, D.W. Blowes, R. Dickhout, J.E. Spangenberg, H.R. Pfeifer, Environ. Sci. Technol. 39 (2005) 2515–2521.  doi: 10.1021/es040082h

    13. [13]

      H.T. Bui, H.Y. Park, P.J.J. Alvarez, et al., Environ. Sci. Technol. 56 (2022) 103–110.  doi: 10.15625/1859-3097/17231

    14. [14]

      K. Kuma, S. Nakabayashi, K. Matsunaga, Water Res. 29 (1995) 1559–1569.

    15. [15]

      X. Li, M. Hou, Y. Fu, et al., Chin. Chem. Lett. 34 (2023) 107752.

    16. [16]

      M. Xiao, F. Wu, J. Environ. Sci. 26 (2014) 935–954.

    17. [17]

      P. Borer, S.J. Hug, J. Colloid. Interface Sci. 416 (2014) 44–53.

    18. [18]

      C. Weller, S. Horn, H. Herrmann, J. Photoch. Photobio. A 268 (2013) 24–36.

    19. [19]

      Q. Chen, D.R. Cohen, M.S. Andersen, A.M. Robertson, D.R. Jones, Appl. Geochem. 143 (2022) 105370.

    20. [20]

      P. Acero, C. Ayora, C. Torrentó, J. -M. Nieto, Geochim. Cosmochim. Acta 70 (2006) 4130–4139.

    21. [21]

      C. Liu, Z. Zhu, F. Li, et al., Chem. Geol. 444 (2016) 110–119.  doi: 10.18002/rama.v11i2s.4196

    22. [22]

      P.J. Swedlund, J.G. Webster, Appl. Geochem. 16 (2001) 503–511.

    23. [23]

      J. Jönsson, S. Sjöberg, L. Lövgren, Water Res. 40 (2006) 969–974.

    24. [24]

      Q. Yao, C. Guo, X. Li, et al., Geochim. Cosmochim. Acta 329 (2022) 70–86.

    25. [25]

      Z. Huang, H. Ma, C. Liu, et al., J. Hazard. Mater. 451 (2023) 131075.

    26. [26]

      J. Yan, A.J. Frierdich, J.G. Catalano, Geochim. Cosmochim. Acta 320 (2022) 143–160.

    27. [27]

      A. Sheng, X. Li, Y. Arai, et al., Environ. Sci. Technol. 54 (2020) 7309–7319.  doi: 10.1021/acs.est.0c00996

    28. [28]

      A.R. Trifoi, E. Matei, M. Râpă, et al., React. Kinet. Mech. Cat. 136 (2023) 2835–2874.  doi: 10.1007/s11144-023-02514-9

    29. [29]

      M. Gotić, S. Musić, Mössbauer, J. Mol. Struct. 834-836 (2007) 445–453.

    30. [30]

      J. Qiu, X. Hou, Y. Ren, et al., Water Res. 231 (2023) 119607.

    31. [31]

      V. Akinwekomi, J.P. Maree, C. Zvinowanda, V. Masindi, J. Environ. Chem. Eng. 5 (2017) 2699–2707.

    32. [32]

      X. Meng, X. Wang, C. Zhang, et al., Environ. Res. 195 (2021) 110855.

    33. [33]

      X. Han, E.J. Tomaszewski, J. Sorwat, et al., Environ. Sci. Technol. 54 (2020) 4121–4130.  doi: 10.1021/acs.est.9b07095

    34. [34]

      C.M. Hansel, S.G. Benner, S. Fendorf, Environ. Sci. Technol. 39 (2005) 7147–7153.  doi: 10.1021/es050666z

    35. [35]

      M. Aeppli, R. Kaegi, R. Kretzschmar, et al., Environ. Sci. Technol. 53 (2019) 3568–3578.  doi: 10.1021/acs.est.8b07190

    36. [36]

      Q. Ye, H. Xu, Q. Wang, et al., J. Hazard. Mater. 407 (2021) 124351.

    37. [37]

      E.D. Burton, R.T. Bush, L.A. Sullivan, D.R.G. Mitchell, Geochim. Cosmochim. Acta 71 (2007) 4456–4473.

    38. [38]

      J. Jönsson, J. Jönsson, L. Lövgren, Appl. Geochem. 21 (2006) 437–445.

    39. [39]

      J.M. Bigham, U. Schwertmann, S.J. Traina, R.L. Winland, M. Wolf, Geochim. Cosmochim. Acta 60 (1996) 2111–2121.

    40. [40]

      V.A. Schoepfer, E.D. Burton, Earth-Sci. Rev. 221 (2021) 103811.

    41. [41]

      L. Kong, M. He, Environ. Sci. Technol. 50 (2016) 6974–6982.  doi: 10.1021/acs.est.6b00857

    42. [42]

      P. Zhang, S. Yuan, Geochim. Cosmochim. Acta 218 (2017) 153–166.

    43. [43]

      C. Zhang, N. Ding, Y. Pan, et al., Chin. Chem. Lett. 35 (2024) 109579.  doi: 10.1016/j.cclet.2024.109579

    44. [44]

      X. Zheng, B. Wu, C. Zhou, et al., Environ. Sci. Technol. 57 (2023) 1177–1185.  doi: 10.1021/acs.est.2c06942

    45. [45]

      B. Liu, Z. Han, Y. Pan, et al., Environ. Sci. Technol. 57 (2023) 11999–12009.  doi: 10.1021/acs.est.3c03216

    46. [46]

      Y. Lv, J. Liu, R. Zhu, et al., ACS Earth. Space Chem. 6 (2022) 811–829.  doi: 10.1021/acsearthspacechem.1c00334

    47. [47]

      T. Xu, R. Zhu, H. Shang, et al., Water Res. 159 (2019) 10–19.

    48. [48]

      Z. Wang, H. Fu, L. Zhang, W. Song, J. Chen, J. Phys. Chem. A 121 (2017) 1647–1656.  doi: 10.1021/acs.jpca.6b09160

    49. [49]

      K. Li, S. Ma, C. Zou, et al., Environ. Sci. Technol. 57 (2023) 20871–20880.  doi: 10.1021/acs.est.3c07473

    50. [50]

      J. Qu, X. Tian, X. Zhang, et al., Appl. Catal. B: Environ. 310 (2022) 121359.

    51. [51]

      X. Huang, Q. Zhao, R.P. Young, et al., Environ. Sci-Nano. 7 (2020) 2278–2292.  doi: 10.1039/d0en00365d

    52. [52]

      C.R. Keenan, D.L. Sedlak, Environ. Sci. Technol. 42 (2008) 1262–1267.  doi: 10.1021/es7025664

    53. [53]

      W. Yan, H.L. Lien, B.E. Koel, W.X. Zhang, Environ. Sci. Proc. Imp. 15 (2013) 63–77.

    54. [54]

      K. Wang, S. Garg, T.D. Waite, Environ. Sci. Technol. 51 (2017) 8384–8395.  doi: 10.1021/acs.est.7b01441

    55. [55]

      J. Guo, X. Chen, Y. Shi, Y. Lan, C. Qin, PLoS One 10 (2015) e0134298.  doi: 10.1371/journal.pone.0134298

    56. [56]

      H. Huang, J. Wang, R. Yao, et al., Chem. Geol. 547 (2020) 119669.

    57. [57]

      J. Jönsson, P. Persson, S. Sjöberg, L. Lövgren, Appl. Geochem. 20 (2005) 179–191.

    58. [58]

      A. Geller, Swiss Journal of Hydrology 47 (1985) 21–26.

    59. [59]

      M.A. Moran, R.G. Zepp, Limnol. Oceanogr. 42 (1997) 1307–1316.  doi: 10.4319/lo.1997.42.6.1307

    60. [60]

      T.R. Reddy, A.J. Frierdich, B.L. Beard, C.M. Johnson, Chem. Geol. 397 (2015) 118–127.

    61. [61]

      Z. Zhou, E.M. Muehe, E.J. Tomaszewski, et al., Environ. Sci. Technol. 54 (2020) 9445–9453.  doi: 10.1021/acs.est.0c03062

    62. [62]

      X. Zhao, Z. Yuan, S. Wang, et al., Sci. Total. Environ. 848 (2022) 157719.

    63. [63]

      Y. Liu, L. Xiong, B. Gao, et al., Chin. Chem. Lett. 35 (2024) 109932.  doi: 10.1016/j.cclet.2024.109932

    64. [64]

      D. Lv, J. Zhou, Z. Cao, et al., Chemosphere 224 (2019) 306–315.

    65. [65]

      W. Hu, M. Yang, Q. Yan, et al., Chin. Chem. Lett. 34 (2023) 108109.

    66. [66]

      J. Zhu, F. Chen, M. Gan, Appl. Surf. Sci. 529 (2020) 147012.

  • 加载中
    1. [1]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    2. [2]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    3. [3]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    4. [4]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    7. [7]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    8. [8]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    9. [9]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    10. [10]

      Zekun GaoXiuli ZhengWeimin LiuJie ShaShuaishuai BianHaohui RenJiasheng WuWenjun ZhangChun-Sing LeePengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874

    11. [11]

      Li QinWenjing WeiKeqing WangXianbao ShiGuixia LingPeng Zhang . Ultrasound-responsive heterojunction sonosensitizers for multifunctional synergistic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(7): 110777-. doi: 10.1016/j.cclet.2024.110777

    12. [12]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    13. [13]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    14. [14]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    15. [15]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    16. [16]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    17. [17]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    18. [18]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    19. [19]

      Jianju LiXinwei ChenYang YuHao MaXinhui XiaZixuan ZhaoJunqiu JiangQingliang ZhaoYingzi LinLiangliang Wei . Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors. Chinese Chemical Letters, 2025, 36(7): 110410-. doi: 10.1016/j.cclet.2024.110410

    20. [20]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return