Recent progress of tailoring valuable graphene quantum dots from biomass
-
* Corresponding author.
E-mail address: stephen6949@hit.edu.cn (S.-H. Ho).
Citation:
Tong Zhao, Ke Wang, Feiyu Liu, Shiyu Zhang, Shih-Hsin Ho. Recent progress of tailoring valuable graphene quantum dots from biomass[J]. Chinese Chemical Letters,
;2025, 36(6): 110321.
doi:
10.1016/j.cclet.2024.110321
X. Zou, M. Tang, Q.L. Lu, et al., Energ. Environ. Sci. 17 (2024) 386–424.
doi: 10.1039/d3ee03059h
Y. Li, Y. Shi, H. Wang, et al., Carbon Energy 5 (2023) e331.
doi: 10.1002/cey2.331
Z. Yang, T. Xu, H. Li, Chem. Rev. 123 (2023) 11047–11136.
doi: 10.1021/acs.chemrev.3c00186
I.A. Kinloch, J. Suhr, J. Lou, et al., Science 362 (2018) 547–553.
doi: 10.1126/science.aat7439
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183–191.
doi: 10.1038/nmat1849
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
S. Caneva, M. Hermans, M. Lee, et al., Nano Lett. 20 (2020) 4924–4931.
doi: 10.1021/acs.nanolett.0c00984
L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, et al., Science 320 (2007) 356–358.
P. Roy, A.P. Periasamy, C. Chuang, et al., New J. Chem. 38 (2014) 4946–4951.
doi: 10.1039/C4NJ01185F
Z. Wang, J. Yu, X. Zhang, et al., ACS Appl. Mater. Interfaces 8 (2016) 1434–1439.
doi: 10.1021/acsami.5b10660
M.K. Kumawat, M. Thakur, R.B. Gurung, R. Srivastava, A.C.S. Sustain. Chem. Eng. 5 (2017) 1382–1391.
doi: 10.1021/acssuschemeng.6b01893
G. Wang, Q. Guo, D. Chen, et al., ACS Appl. Mater. Interfaces 10 (2018) 5750–5759.
doi: 10.1021/acsami.7b16002
R. Wang, G. Xia, W. Zhong, et al., Green Chem. 21 (2019) 3343–3352.
doi: 10.1039/c9gc01012b
A. Abbas, T.A. Tabish, S.J. Bull, T.M. Lim, A.N. Phan, Sci. Rep. 10 (2020) 21262.
doi: 10.1038/s41598-020-78070-2
R. Wang, L. Jiao, X. Zhou, et al., J. Hazard. Mater. 412 (2021) 125096.
doi: 10.1016/j.jhazmat.2021.125096
Y. Wang, Q. He, X. Zhao, et al., J. Environ. Chem. Eng. 10 (2022) 107150.
doi: 10.1016/j.jece.2022.107150
K. Luo, X. Luo, Y. Wu, et al., Diam. Relat. Mater. 135 (2023) 109849.
doi: 10.1016/j.diamond.2023.109849
L. Zheng, H. Zhang, M. Won, et al., Biosens. Bioelectron. 224 (2023) 115050.
doi: 10.1016/j.bios.2022.115050
D. Ghosh, K. Sarkar, P. Devi, K.H. Kim, P. Kumar, Renew. Sust. Energ. Rev.135 (2021) 110391.
doi: 10.1016/j.rser.2020.110391
G. Li, Z. Liu, W. Gao, B. Tang, Coordin. Chem. Rev. 478 (2023) 214966.
doi: 10.1016/j.ccr.2022.214966
X. Ning, A. Hao, R. Chen, M.F. Khan, D. Jia, Carbon N Y 218 (2024) 118772.
doi: 10.1016/j.carbon.2023.118772
Y. Yang, B. Wang, X. Zhang, et al., Adv. Mater. 35 (2023) 2211337.
doi: 10.1002/adma.202211337
Z. Jin, M. Liu, X. Huang, et al., Anal. Chem. 94 (2022) 7609–7618.
doi: 10.1021/acs.analchem.2c00802
S. Tang, D. Chen, Y. Yang, et al., J. Colloid Interface Sci. 617 (2022) 182–192.
doi: 10.1016/j.jcis.2022.02.116
S. Ye, F. Su, J. Li, et al., J. Mater. Chem. B 12 (2024) 122–130.
doi: 10.1039/d3tb01844j
Y. Ham, C. Kim, D. Shin, et al., Small 19 (2023) 2303432.
doi: 10.1002/smll.202303432
D. Kurniawan, M. Ryan Rahardja, P.V. Fedotov, et al., Chem. Eng. J. 451 (2023) 139083.
doi: 10.1016/j.cej.2022.139083
M.J. Im, J.I. Kim, S.K. Hyeong, B.J. Moon, S. Bae, Small 19 (2023) 2304497.
doi: 10.1002/smll.202304497
A. Abbas, L.T. Mariana, A.N. Phan, Carbon N Y 140 (2018) 77–99.
doi: 10.1016/j.carbon.2018.08.016
L. Shi, B. Wang, S. Lu, Matter 6 (2023) 728–760.
doi: 10.1016/j.matt.2023.01.003
V. Dananjaya, S. Marimuthu, R. Yang, A.N. Grace, C. Abeykoon, Prog. Mater. Sci. 144 (2024) 101282.
doi: 10.1016/j.pmatsci.2024.101282
M.C. Biswas, M.T. Islam, P.K. Nandy, M.M. Hossain, ACS Mater. Lett. 3 (2021) 889–911.
doi: 10.1021/acsmaterialslett.0c00550
A.I. Osman, Y. Zhang, M. Farghali, et al., Environ. Chem. Lett. 22 (2024) 841–887.
doi: 10.1007/s10311-023-01682-3
A. Abbas, S. Rubab, A. Rehman, et al., Mater. Today Chem. 30 (2023) 101555.
doi: 10.1016/j.mtchem.2023.101555
A.K. Chaturvedi, A. Pappu, A.K. Srivastava, M.K. Gupta, Mater. Lett. 301 (2021) 130323.
doi: 10.1016/j.matlet.2021.130323
X. Chai, H. He, H. Fan, X. Kang, X. Song, Bioresour. Technol. 282 (2019) 142–147.
doi: 10.1016/j.biortech.2019.02.126
W. Chen, J. Shen, G. Lv, et al., ChemistrySelect 4 (2019) 2898–2902.
doi: 10.1002/slct.201803512
Z. Wang, D. Chen, B. Gu, et al., Spectrochim. Acta A 227 (2020) 117671.
doi: 10.1016/j.saa.2019.117671
X. Zhong, C. Tong, T. Liu, et al., Biomater. Sci. 8 (2020) 6670–6682.
doi: 10.1039/d0bm01398f
L.V. Dutra, C.R. de Oliveira Fontoura, J.C. da Cruz, et al., Colloids Surf. A 651 (2022) 129442.
doi: 10.1016/j.colsurfa.2022.129442
H. Saleem, A. Saud, S.J. Zaidi, ACS Omega 8 (2023) 28098–28108.
doi: 10.1021/acsomega.3c00694
M. Safari, R.A. de Sousa, M. Salamat-Talab, et al., Appl. Sci. 11 (2021) 4846.
doi: 10.3390/app11114846
R.V. Khose, P. Bangde, M.P. Bondarde, et al., Spectrochim. Acta A 266 (2022) 120453.
doi: 10.1016/j.saa.2021.120453
D. Kurniawan, R.J. Weng, O. Setiawan, K.K. Ostrikov, W.H. Chiang, Carbon N Y 185 (2021) 501–513.
doi: 10.1016/j.carbon.2021.09.050
R.S. Tade, P.O. Patil, ACS Biomater. Sci. Eng. 8 (2021) 470–483.
X. Li, G. Lin, L. Zhou, et al., Nanoscale Horiz. 9 (2024) 976–989.
doi: 10.1039/d4nh00024b
L.Y. Chang, C.C. Chang, M. Rinawati, et al., Appl. Energy 361 (2024) 122930.
doi: 10.1016/j.apenergy.2024.122930
Y. Shen, Biomass Bioenergy 134 (2020) 105479.
doi: 10.1016/j.biombioe.2020.105479
Y. Gong, L. Xie, C. Chen, et al., Prog. Mater. Sci. 132 (2023) 101048.
doi: 10.1016/j.pmatsci.2022.101048
T. Gao, S. Guo, J. Zhang, et al., Green Chem. 25 (2023) 8869–8884.
doi: 10.1039/d3gc02702c
T. Han, Y. Huang, T. Gao, et al., Food Chem. 404 (2023) 134509.
doi: 10.1016/j.foodchem.2022.134509
T. Chen, J. Sun, N. Xue, et al., J. Mater. Chem. A 10 (2022) 10759–10767.
doi: 10.1039/d2ta00837h
Y. Zhu, L. Yan, M. Xu, et al., Colloids Surf. A 610 (2021) 125703.
doi: 10.1016/j.colsurfa.2020.125703
V.E. Bécsy-Jakab, A. Savoy, B.K. Saulnier, S.K. Singh, D.B. Hodge, Bioresour. Technol. 399 (2024) 130610.
doi: 10.1016/j.biortech.2024.130610
L. Zhu, D. Li, H. Lu, S. Zhang, H. Gao, Int. J. Biol. Macromol. 194 (2022) 254–263.
doi: 10.1016/j.ijbiomac.2021.11.199
R. Wang, W. Su, S. Zhang, et al., Adv. Opt. Mater. 11 (2023) 2202944.
doi: 10.1002/adom.202202944
H. Guo, Z. Chen, Q. Yin, et al., Appl. Catal. B Environ. 339 (2023) 123129.
doi: 10.1016/j.apcatb.2023.123129
W. Chen, D. Li, L. Tian, et al., Green Chem. 20 (2018) 4438–4442.
doi: 10.1039/c8gc02106f
W. Wang, Z. Wang, J. Liu, et al., Ind. Eng. Chem. Res. 57 (2018) 9144–9150.
doi: 10.1021/acs.iecr.8b00913
M. Thakur, M.K. Kumawat, R. Srivastava, RSC Adv. 7 (2017) 5251–5261.
doi: 10.1039/C6RA25976F
G. Wang, A. Xu, P. He, et al., Mater. Lett. 242 (2019) 156–159.
doi: 10.1016/j.matlet.2019.01.139
S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Adv. Mater. 33 (2021) 2103477.
doi: 10.1002/adma.202103477
H.L. Tran, V.D. Dang, N.K. Dega, et al., Sensor. Actuat. B Chem. 368 (2022) 132233.
doi: 10.1016/j.snb.2022.132233
K. Tak, R. Sharma, V. Dave, S. Jain, S. Sharma, ACS Chem. Neurosci. 11 (2020) 3741–3748.
doi: 10.1021/acschemneuro.0c00273
T.V. de Medeiros, J. Manioudakis, F. Noun, et al., J. Mater. Chem. C 7 (2019) 7175–7195.
doi: 10.1039/c9tc01640f
M. Wang, Y. Xie, Y. Gao, X. Huang, W. Chen, Bioresour. Technol. 395 (2024) 130364.
doi: 10.1016/j.biortech.2024.130364
C. Sudarsanakumar, S. Thomas, S. Mathew, et al., Mater. Res. Bull. 110 (2019) 32–38.
doi: 10.1016/j.materresbull.2018.10.014
M. Kaur, S.K. Mehta, S.K. Kansal, Sensor. Actuat. B Chem. 245 (2017) 938–945.
doi: 10.1016/j.snb.2017.02.026
E. Turunc, O. Kahraman, A. Dogen, et al., Synthetic Met. 299 (2023) 117453.
doi: 10.1016/j.synthmet.2023.117453
W.H. Chiang, D. Mariotti, R.M. Sankaran, J.G. Eden, K. Ostrikov, Adv. Mater. 32 (2020) 1905508.
doi: 10.1002/adma.201905508
Z. Fan, H. Sun, L. Dou, et al., Chem. Eng. J. 461 (2023) 141860.
doi: 10.1016/j.cej.2023.141860
D. Choi, H.J. Yeom, K.H. You, et al., Carbon N Y 162 (2020) 423–430.
doi: 10.1016/j.carbon.2020.02.068
D. Kurniawan, N. Sharma, M.R. Rahardja, et al., ACS Appl. Mater. Inter. 14 (2022) 52289–52300.
doi: 10.1021/acsami.2c15251
J.S. Yang, D.Z. Pai, W.H. Chiang, Carbon N Y 153 (2019) 315–319.
doi: 10.1016/j.carbon.2019.07.024
D. Kurniawan, W.H. Chiang, Carbon N Y 167 (2020) 675–684.
doi: 10.1016/j.carbon.2020.05.085
H. Kalita, V.S. Palaparthy, M.S. Baghini, M. Aslam, Carbon N Y 165 (2020) 9–17.
doi: 10.1016/j.carbon.2020.04.021
D. Rai, Y. Jaiswal, S. Sinha, Appl. Surf. Sci. 653 (2024) 159386.
doi: 10.1016/j.apsusc.2024.159386
S. Chung, R.A. Revia, M. Zhang, Adv. Mater. 33 (2021) 1904362.
doi: 10.1002/adma.201904362
N. Kumar, M. Abubakar Sadique, R. Khan, Mater. Lett. 305 (2021) 130829.
doi: 10.1016/j.matlet.2021.130829
S.A. Ansari, Nanomaterials 12 (2022) 3814.
doi: 10.3390/nano12213814
A. Singh, R.K. Yadav, U. Yadav, T.W. Kim, Photochem. Photobiol. 98 (2021) 412–420.
H. Kalita, J. Mohapatra, L. Pradhan, et al., RSC Adv. 6 (2016) 23518–23524.
doi: 10.1039/C5RA25706A
M. Fan, Z. Wang, K. Sun, et al., Adv. Mater. 35 (2023) 2209086.
doi: 10.1002/adma.202209086
L. Zhu, D. Shen, C. Wu, et al., Ind. Eng. Chem. Res. 59 (2020) 22017–22039.
doi: 10.1021/acs.iecr.0c04760
B. Li, Y. Wang, L. Huang, et al., Synthetic Met. 276 (2021) 116758.
doi: 10.1016/j.synthmet.2021.116758
M. Farahmand Habibi, M. Arvand, U. Schröder, S. Sohrabnezhad, Fuel 286 (2021) 119291.
doi: 10.1016/j.fuel.2020.119291
R.S. Tade, S.N. Nangare, A.G. Patil, et al., Nanotechnology 31 (2020) 292001.
doi: 10.1088/1361-6528/ab803e
N. Far’ain Md Noor, M.A. Saiful Badri, M.M. Salleh, A.A. Umar, Opt. Mater. 83 (2018) 306–314.
doi: 10.1016/j.optmat.2018.06.040
A. Alaghmandfard, O. Sedighi, N. Tabatabaei Rezaei, et al., Mat. Sci. Eng. C Mater. 120 (2021) 111756.
doi: 10.1016/j.msec.2020.111756
J. Yang, P. Li, Z. Song, et al., Appl. Surf. Sci. 593 (2022) 153367.
doi: 10.1016/j.apsusc.2022.153367
Y. Zhao, B. Gu, G. Guo, et al., ACS Appl. Nano Mater. 6 (2023) 3245–3253.
doi: 10.1021/acsanm.2c04928
Y.P. Zhang, J.M. Ma, Y.S. Yang, et al., Spectrochim. Acta A 217 (2019) 60–67.
doi: 10.1016/j.saa.2019.03.044
H. Wang, R. Revia, Q. Mu, et al., Nanoscale Horiz. 5 (2020) 573–579.
doi: 10.1039/c9nh00608g
S. Mahesh, C.L. Lekshmi, K.D. Renuka, K. Joseph, Part. Part. Syst. Char. 33 (2016) 70–74.
doi: 10.1002/ppsc.201500103
R.S. Tade, P.O. Patil, Curr. Appl. Phys. 20 (2020) 1226–1236.
doi: 10.1016/j.cap.2020.08.006
S. Zhu, Y. Song, J. Wang, et al., Nano Today 13 (2017) 10–14.
doi: 10.1016/j.nantod.2016.12.006
H. Li, X. Yan, D. Kong, et al., Nanoscale Horiz. 5 (2020) 218–234.
doi: 10.1039/c9nh00476a
S. Sangam, A. Gupta, A. Shakeel, et al., Green Chem. 20 (2018) 4245–4259.
doi: 10.1039/c8gc01638k
K. Tak, P. Sharma, R. Sharma, et al., J. Drug Deliv. Sci. Tec. 73 (2022) 103486.
doi: 10.1016/j.jddst.2022.103486
F.D. de Menezes, S.R.R. Dos Reis, S.R. Pinto, et al., Mater. Sci. Eng. C Mater. 102 (2019) 405–414.
doi: 10.1016/j.msec.2019.04.058
G. Gorle, G. Gollavelli, G. Nelli, Y.C. Ling, Pharmaceutics 15 (2023) 632.
doi: 10.3390/pharmaceutics15020632
W. Wu, Y. Qin, Y. Fang, et al., J. Hazard. Mater. 441 (2023) 129954.
doi: 10.1016/j.jhazmat.2022.129954
X. Wang, C. Hu, Z. Gu, L. Dai, J. Nanobiotechnol. 19 (2021) 340.
doi: 10.1186/s12951-021-01053-6
S. Sikiru, T.L. Oladosu, S.Y. Kolawole, et al., J. Energy Storage 60 (2023) 106556.
doi: 10.1016/j.est.2022.106556
A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352 (2016) aad4424.
doi: 10.1126/science.aad4424
H. Teymourinia, M. Salavati-Niasari, O. Amiri, M. Farangi, J. Mol. Liq. 251 (2018) 267–272.
doi: 10.1016/j.molliq.2017.12.059
S. Mahalingam, A. Manap, A. Omar, et al., Renew. Sust. Energ. Rev. 144 (2021) 110999.
doi: 10.1016/j.rser.2021.110999
K. Silambarasan, S. Harish, K. Hara, J. Archana, M. Navaneethan, Carbon N Y 181 (2021) 107–117.
doi: 10.1016/j.carbon.2021.01.162
D.S. Ahmed, M.K.A. Mohammed, S.M. Majeed, ACS Appl. Energ. Mater. 3 (2020) 10863–10871.
doi: 10.1021/acsaem.0c01896
E. Khorshidi, B. Rezaei, A. Kavousighahfarokhi, et al., ACS Appl. Mater. Interfaces 14 (2022) 54623–54634.
doi: 10.1021/acsami.2c12944
Q. Cai, W. Sheng, J. Yang, et al., Adv. Funct. Mater. 33 (2023) 2304503.
doi: 10.1002/adfm.202304503
T. Guo, H. Wang, W. Han, et al., Nano Energy 98 (2022) 107298.
doi: 10.1016/j.nanoen.2022.107298
J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, J. Power Sources 451 (2020) 227794.
doi: 10.1016/j.jpowsour.2020.227794
N. Zahir, P. Magri, W. Luo, J.J. Gaumet, P. Pierrat, Energy Environ. Mater. 5 (2021) 201–214.
Z. Ding, X. Mei, X. Wang, Nanoscale Adv. 3 (2021) 2529–2537.
doi: 10.1039/d0na01024c
G.K. Gupta, P. Sagar, M. Srivastava, et al., Int. J. Hydrogen Energ. 46 (2021) 38416–38424.
doi: 10.1016/j.ijhydene.2021.09.094
G. Shao, R. Yu, N. Chen, M. Ye, X.Y. Liu, Small Methods 5 (2021) 2000853.
doi: 10.1002/smtd.202000853
H. Wu, Z. Guo, M. Li, et al., Electrochim. Acta 370 (2021) 137758.
doi: 10.1016/j.electacta.2021.137758
S. Lee, J. Lee, S. Jeon, Sci. Adv. 9 (2023) eade2585.
doi: 10.1126/sciadv.ade2585
S. Jana, T. Dey, B.N. Shivakiran Bhaktha, S.K. Ray, Mater. Today Nano 24 (2023) 100400.
doi: 10.1016/j.mtnano.2023.100400
H. Tetsuka, A. Nagoya, R. Asahi, J. Mater. Chem. C 3 (2015) 3536–3541.
doi: 10.1039/C5TC00250H
P. He, Y. Shi, T. Meng, et al., Nanoscale 12 (2020) 4826–4832.
doi: 10.1039/c9nr10958g
F. Liu, S. Zhu, D. Li, G. Chen, S.H. Ho, iScience 23 (2020) 101174.
doi: 10.1016/j.isci.2020.101174
L. Wang, W. Li, B. Wu, et al., Chem. Eng. J. 300 (2016) 75–82.
doi: 10.1016/j.cej.2016.04.123
C.T. Hsieh, P.Y. Sung, Y.A. Gandomi, K.S. Khoo, J.K. Chang, Chemosphere 318 (2023) 137926.
doi: 10.1016/j.chemosphere.2023.137926
M.R. Mahajan, P.O. Patil, Inorg. Chem. Commun. 144 (2022) 109883.
doi: 10.1016/j.inoche.2022.109883
M.E. Mahmoud, N.A. Fekry, A.M. Abdelfattah, J. Mol. Liq. 341 (2021) 117312.
doi: 10.1016/j.molliq.2021.117312
M.E. Mahmoud, N.A. Fekry, S.M. Mohamed, J. Water Process. Eng. 46 (2022) 102562.
doi: 10.1016/j.jwpe.2022.102562
I.J. Gómez, M. Díaz-Sánchez, N. Pizúrová, et al., J. Photoch. Photobio. A 443 (2023) 114875.
doi: 10.1016/j.jphotochem.2023.114875
Y. Cui, T. Wang, J. Liu, et al., Chem. Eng. J. 420 (2021) 129595.
doi: 10.1016/j.cej.2021.129595
J. Tang, J. Zhu, L. Liu, et al., Chem. Eng. J. 482 (2024) 148813.
doi: 10.1016/j.cej.2024.148813
K. Ghosh, N.K. Mridha, A.A. Khan, et al., Physica E: Low Dimens. Syst. Nanostruct. 135 (2022) 114993.
doi: 10.1016/j.physe.2021.114993
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Zirui Zhu , Peng Liu , Jinhua Wang , Hongbin Zhang , Wei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794
Fengshun Wang , Huachao Ji , Zefei Wu , Kang Chen , Wenqi Gao , Chen Wang , Longlu Wang , Jianmei Chen , Dafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Siting Cai , Xiang Chen , Shuli Wang , Xinqin Liao , Zhong Chen , Yue Lin . Silica coating of quantum dots and their applications in optoelectronic fields. Chinese Chemical Letters, 2025, 36(6): 110798-. doi: 10.1016/j.cclet.2024.110798
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969