Citation: Xiaoyu Du, Huan Wang. Tailoring mass transfer on electrochemical fixation of air-abundant molecules[J]. Chinese Chemical Letters, ;2025, 36(8): 110276. doi: 10.1016/j.cclet.2024.110276 shu

Tailoring mass transfer on electrochemical fixation of air-abundant molecules

    * Corresponding author.
    E-mail address: wutongbo@hust.edu.cn (H. Wang).
  • Received Date: 5 June 2024
    Revised Date: 3 July 2024
    Accepted Date: 16 July 2024
    Available Online: 16 July 2024

Figures(6)

  • Electrochemical reduction of air-abundant molecules (e.g., CO2, N2, and O2) offers a sustainable solution to address global energy and environmental challenges, where high current density and energy efficiency are highly desirable. However, commercially-relevant current density will cause dramatic change of cation, solvent, pH, and reactant molecular distribution near electrode, resulting in severe concentration polarization and sluggish reaction kinetics. In this case, mass transfer such as molecule migration pathway in electrolytes, electrodes, and devices need to be rationally designed and systematically optimized. Here this review will present a systematical introduction on regulating mass transfer on electrochemical fixation of air-abundant molecules. We firstly discuss the fundamental mass transport from bulk electrolyte to catalyst surface and within electric double layer (EDL) and review the recent advances in regulating mass transport behaviors and optimizing strategy of mass transfer on the catalytic surface. Then we compare the mass transport differences among different cell architectures combining with innovative prospect for transfer pathway towards breaking natural limitation of gas solubility over electroactive interfaces. It is expected that this review can inspire research on comprehensive understanding of fundamental mass transport mechanism at catalyst/electrolyte interface and shed light on optimizing the catalytical device towards practical application for electrochemical fixation of air-abundant molecules.
  • 加载中
    1. [1]

      Z. Lin, C. Han, G.E.P. O'Connell, et al., Angew. Chem. Int. Ed. 62 (2023) e202301435.

    2. [2]

      J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) eaar6611.

    3. [3]

      N. Tanjedrew, K. Thammanatpong, P. Surawatanawong, et al., Chem. Eur. J. 30 (2024) e202302854.

    4. [4]

      M.B. Ross, P. De Luna, Y. Li, et al., Nat. Catal. 2 (2019) 648–658.  doi: 10.1038/s41929-019-0306-7

    5. [5]

      P. Tian, J. Su, Y. Song, et al., Trans. Tianjin Univ. 28 (2022) 73–79.  doi: 10.1007/s12209-021-00305-8

    6. [6]

      X. Tian, X.F. Lu, B.Y. Xia, et al., Joule 4 (2020) 45–68.

    7. [7]

      B.M. Ceballos, G. Pilania, K.P. Ramaiyan, et al., Curr. Opin. Electrochem. 28 (2021) 100723.

    8. [8]

      Z. Wang, Y. Zhou, P. Qiu, et al., Adv. Mater. 35 (2023) 2303052.

    9. [9]

      X. Wang, J. Zhang, P. Wang, et al., Energy Environ. Sci. 16 (2023) 5500–5512.  doi: 10.1039/d3ee02503a

    10. [10]

      B. Chang, H. Pang, F. Raziq, et al., Energy Environ. Sci. 16 (2023) 4714–4758.  doi: 10.1039/d3ee00964e

    11. [11]

      D. Wang, X.F. Lu, D. Luan, et al., Adv. Mater. 36 (2024) 2312645.

    12. [12]

      M.G. Kibria, J.P. Edwards, C.M. Gabardo, et al., Adv. Mater. 31 (2019) 1807166.

    13. [13]

      W. Xing, M. Yin, Q. Lv, et al., Oxygen solubility, diffusion coefficient, and solution viscosity, in: W. Xing, G. Yin, J. Zhang Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, Amsterdam, 2014, 1–31.

    14. [14]

      X. Shen, S. Liu, X. Xia, et al., Adv. Funct. Mater. 32 (2022) 2109422.

    15. [15]

      T. Burdyny, W.A. Smith, Energy Environ. Sci. 12 (2019) 1442–1453.  doi: 10.1039/c8ee03134g

    16. [16]

      O.A. Ojelade, S.F. Zaman, B.J. Ni, J. Environ. Manage. 342 (2023) 118348.

    17. [17]

      I. Staffell, D. Scamman, A. Velazquez Abad, et al., Energy Environ. Sci. 12 (2019) 463–491.  doi: 10.1039/c8ee01157e

    18. [18]

      W. Lai, Y. Qiao, Y. Wang, et al., Adv. Mater. 35 (2023) 2306288.

    19. [19]

      Á. Molina, I. Morales, M. López-Tenés, Electrochem. Commun. 8 (2006) 1062–1070.

    20. [20]

      P. Chauhan, J. Herranz, M. Winzely, et al., J. Phys. Chem. C 127 (2023) 16453–16463.  doi: 10.1021/acs.jpcc.3c04233

    21. [21]

      N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 36 (2006) 161–172.  doi: 10.1007/s10800-005-9058-y

    22. [22]

      R. Kas, K. Yang, D. Bohra, et al., Chem. Sci. 11 (2020) 1738–1749.  doi: 10.1039/c9sc05375a

    23. [23]

      X. Jiang, Y. Chen, X. Zhang, et al., ChemSusChem 15 (2022) e202201551.

    24. [24]

      S.S. Bhargava, D. Azmoodeh, X. Chen, et al., ACS Energy Lett. 6 (2021) 2427–2433.  doi: 10.1021/acsenergylett.1c01029

    25. [25]

      J. Pan, P. Li, X. Jiang, et al., Mater. Today Phys. 35 (2023) 101096.

    26. [26]

      L. Huang, G. Gao, C. Yang, et al., Nat. Commun. 14 (2023) 2958.

    27. [27]

      G. Wang, J. Chen, Y. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993–5061.  doi: 10.1039/d0cs00071j

    28. [28]

      R. Battino, T.R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data 13 (1984) 563–600.

    29. [29]

      E. Hosono, S. Fujihara, I. Honma, et al., J. Mater. Chem. 15 (2005) 1938–1945.  doi: 10.1039/b418955h

    30. [30]

      S. Kaneco, K. Iiba, H. Katsumata, et al., J. Solid State Electrochem. 11 (2007) 490–495.  doi: 10.1007/s10008-006-0185-0

    31. [31]

      M. Moura de Salles Pupo, R. Kortlever, ChemPhysChem 20 (2019) 2926–2935.  doi: 10.1002/cphc.201900680

    32. [32]

      R.N. Itoe, G.D. Wesson, E.E. Kalu, J. Electrochem. Soc. 147 (2000) 2445.

    33. [33]

      Q. Shi, Y. He, X. Bai, et al., Energy Environ. Sci. 13 (2020) 3544–3555.  doi: 10.1039/d0ee01968b

    34. [34]

      Y. Ren, C. Yu, X. Han, et al., ACS Energy Lett. 6 (2021) 3844–3850.  doi: 10.1021/acsenergylett.1c01893

    35. [35]

      D. Krishnamurthy, N. Lazouski, M.L. Gala, et al., ACS Cent. Sci. 7 (2021) 2073–2082.  doi: 10.1021/acscentsci.1c01151

    36. [36]

      J.L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc. 135 (2013) 8798–8801.  doi: 10.1021/ja4033549

    37. [37]

      J. Medina-Ramos, R.C. Pupillo, T.P. Keane, et al., J. Am. Chem. Soc. 137 (2015) 5021–5027.  doi: 10.1021/ja5121088

    38. [38]

      S. Piontek, K. junge Puring, D. Siegmund, et al., Chem. Sci. 10 (2019) 1075–1081.  doi: 10.1039/c8sc03555e

    39. [39]

      Y. Oh, H. Vrubel, S. Guidoux, et al., Chem. Commun. 50 (2014) 3878–3881.  doi: 10.1039/c3cc49262a

    40. [40]

      B. Eneau-Innocent, D. Pasquier, F. Ropital, et al., Appl. Catal. B 98 (2010) 65–71.

    41. [41]

      H.K. Lee, C.S.L. Koh, Y.H. Lee, et al., Sci. Adv. 4 (2018) eaar3208.

    42. [42]

      T. Mairegger, H. Li, C. Grießer, et al., ACS Catal. 13 (2023) 5780–5786.  doi: 10.1021/acscatal.3c00236

    43. [43]

      N.E. Mendieta-Reyes, A.K. Díaz-García, R. Gómez, ACS Catal. 8 (2018) 1903–1912.  doi: 10.1021/acscatal.7b03047

    44. [44]

      G. Lee, Y.C. Li, J.Y. Kim, et al., Nat. Energy 6 (2021) 46–53.

    45. [45]

      Y. Cui, B. He, X. Liu, et al., Ind. Eng, Chem. Res. 59 (2020) 20235–20252.  doi: 10.1021/acs.iecr.0c04037

    46. [46]

      Y. Tian, Y. Liu, H. Wang, et al., ACS Sustain. Chem. Eng. 10 (2022) 4345–4358.  doi: 10.1021/acssuschemeng.2c00018

    47. [47]

      B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, et al., Science 334 (2011) 643–644.  doi: 10.1126/science.1209786

    48. [48]

      F. Zhou, L.M. Azofra, M. Ali, et al., Energy Environ. Sci. 10 (2017) 2516–2520.

    49. [49]

      N. Dubouis, A. Serva, R. Berthin, et al., Nat. Catal. 3 (2020) 656–663.  doi: 10.1038/s41929-020-0482-5

    50. [50]

      S. Garg, M. Li, A.Z. Weber, et al., J. Mater. Chem. A 8 (2020) 1511–1544.  doi: 10.1039/c9ta13298h

    51. [51]

      P. Li, Y. Jiang, Y. Hu, et al., Nat. Catal. 5 (2022) 900–911.  doi: 10.1038/s41929-022-00846-8

    52. [52]

      A.H. Shah, Z. Zhang, Z. Huang, et al., Nat. Catal. 5 (2022) 923–933.  doi: 10.1038/s41929-022-00851-x

    53. [53]

      H. Le, C. Lin, E. Kätelhön, et al., Electrochim. Acta 298 (2019) 778–787.

    54. [54]

      Y. Liu, H. Jiang, Z. Hou, Chem. Eur. J. 27 (2021) 17726–17735.  doi: 10.1002/chem.202102764

    55. [55]

      J. Gu, S. Liu, W. Ni, et al., Nat. Catal. 5 (2022) 268–276.  doi: 10.1038/s41929-022-00761-y

    56. [56]

      I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, et al., Nat. Energy 2 (2017) 17031.

    57. [57]

      J. Hou, B. Xu, Q. Lu, Nat. Commun. 15 (2024) 1926.

    58. [58]

      X. Mao, T. He, G. Kour, et al., Chem. Sci. 15 (2024) 3330–3338.  doi: 10.1039/d3sc06471a

    59. [59]

      H. Lee, H. Ren, J. Am. Chem. Soc. 146 (2024) 11126–11132.

    60. [60]

      X. Sun, S. Wang, Y. Hou, et al., J. Mater. Chem. A 11 (2023) 13089–13106.  doi: 10.1039/d3ta01903a

    61. [61]

      B. Zhao, H. Luo, J. Liu, et al., Chin. Chem. Lett. 36 (2025) 109919.

    62. [62]

      B. Su, M. Zheng, W. Lin, et al., Adv. Energy Mater. 13 (2023) 2203290.

    63. [63]

      Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732–745.  doi: 10.1038/s41560-019-0450-y

    64. [64]

      Y. Zhai, P. Han, Q. Yun, et al., eScience 2 (2022) 467–485.

    65. [65]

      J. Yuan, J. Zou, Z. Wu, et al., Nanotechnology 35 (2024) 175402.  doi: 10.1088/1361-6528/ad0301

    66. [66]

      Z.Y. Zhang, H.B. Wang, F.F. Zhang, et al., Rare Met. 43 (2024) 1513–1523.  doi: 10.1007/s12598-023-02527-2

    67. [67]

      X. Chen, Y. Zhao, J. Han, et al., Chempluschem 88 (2023) e202200370.

    68. [68]

      X. Lv, F. Wang, J. Du, et al., Sustain. Energy Fuels 4 (2020) 4469–4472.  doi: 10.1039/d0se00828a

    69. [69]

      L. Zhang, S. Chen, Y. Dai, et al., ChemCatChem 10 (2018) 925–930.  doi: 10.1002/cctc.201701578

    70. [70]

      C. Choi, S. Kwon, T. Cheng, et al., Nat. Catal. 3 (2020) 804–812.  doi: 10.1038/s41929-020-00504-x

    71. [71]

      S. Shen, J. He, X. Peng, et al., J. Mater. Chem. A 6 (2018) 18960–18966.  doi: 10.1039/c8ta04758h

    72. [72]

      P. Li, Z. Jin, Z. Fang, et al., Angew. Chem. Int. Ed. 59 (2020) 22610–22616.  doi: 10.1002/anie.202011596

    73. [73]

      S. Liu, L. Song, R. Liu, et al., Small 19 (2023) 2304808.

    74. [74]

      H. Wang, G. Zhan, C. Tang, et al., ACS Nano 17 (2023) 4790–4799.  doi: 10.1021/acsnano.2c11227

    75. [75]

      X. Zhang, D. Xue, S. Jiang, et al., InfoMat 4 (2022) e12257.

    76. [76]

      A. Robb, A. Ozden, R.K. Miao, et al., ACS Appl. Mater. Interfaces 14 (2022) 4155–4162.  doi: 10.1021/acsami.1c21386

    77. [77]

      H.Q. Liang, S. Zhao, X.M. Hu, et al., ACS Catal. 11 (2021) 958–966.  doi: 10.1021/acscatal.0c03766

    78. [78]

      T. Kwon, S. Prabhakaran, D.H. Kim, et al., Chem. Eng. J. 485 (2024) 150045.

    79. [79]

      Z.Z. Niu, F.Y. Gao, X.L. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 8011–8021.  doi: 10.1021/jacs.1c01190

    80. [80]

      L. Xue, X. Wu, Y. Liu, et al., Nano Res. 15 (2022) 1393–1398.  doi: 10.1007/s12274-021-3675-6

    81. [81]

      P.P. Yang, M.R. Gao, Chem. Soc. Rev. 52 (2023) 4343–4380.  doi: 10.1039/d2cs00849a

    82. [82]

      P.P. Yang, X.L. Zhang, F.Y. Gao, et al., J. Am. Chem. Soc. 142 (2020) 6400–6408.  doi: 10.1021/jacs.0c01699

    83. [83]

      T.T. Zhuang, Y. Pang, Z.Q. Liang, et al., Nat. Catal. 1 (2018) 946–951.  doi: 10.1038/s41929-018-0168-4

    84. [84]

      M. Nazemi, M.A. El-Sayed, J. Phys. Chem. Lett. 9 (2018) 5160–5166.  doi: 10.1021/acs.jpclett.8b02188

    85. [85]

      Y. Cheng, H. Lu, K. Zhang, et al., Carbon N Y 128 (2018) 38–45.

    86. [86]

      M. Liu, Y. Pang, B. Zhang, et al., Nature 537 (2016) 382–386.  doi: 10.1038/nature19060

    87. [87]

      F.Y. Gao, S.J. Hu, X.L. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 8706–8712.  doi: 10.1002/anie.201912348

    88. [88]

      C. Li, S. Mou, X. Zhu, et al., Chem. Commun. 55 (2019) 14474–14477.  doi: 10.1039/c9cc08234d

    89. [89]

      F. Wang, X. Lv, X. Zhu, et al., Chem. Commun. 56 (2020) 2107–2110.  doi: 10.1039/c9cc09803h

    90. [90]

      J.C. Dong, X.G. Zhang, V. Briega-Martos, et al., Nat. Energy 4 (2019) 60–67.

    91. [91]

      R.B. Sandberg, J.H. Montoya, K. Chan, et al., Surf. Sci. 654 (2016) 56–62.

    92. [92]

      Y. Wang, P. Han, X. Lv, et al., Joule 2 (2018) 2551–2582.

    93. [93]

      D. Bao, Q. Zhang, F.L. Meng, et al., Adv. Mater. 29 (2017) 1604799.

    94. [94]

      A.M. Gómez-Marín, J.M. Feliu, Catal. Today 244 (2015) 172–176.

    95. [95]

      Y. Gao, Q. Wu, X. Liang, et al., Adv. Sci. 7 (2020) 1902820.

    96. [96]

      H. Jin, L. Li, X. Liu, et al., Adv. Mater. 31 (2019) 1902709.

    97. [97]

      X. Wang, K. Klingan, M. Klingenhof, et al., Nat. Commun. 12 (2021) 794.

    98. [98]

      J. Du, A. Chen, S. Hou, et al., Carbon Energy 4 (2022) 1274–1284.  doi: 10.1002/cey2.223

    99. [99]

      C. Du, C. Qiu, Z. Fang, et al., Nano Energy 92 (2022) 106784.

    100. [100]

      K. Tang, H. Hu, Y. Xiong, et al., Angew. Chem. Int. Ed. 61 (2022) e202202671.

    101. [101]

      G. Xu, H. Li, A.S.R. Bati, et al., J. Mater. Chem. A 8 (2020) 15875–15883.  doi: 10.1039/d0ta03237a

    102. [102]

      L. Yan, B. Xie, C. Yang, et al., Adv. Energy Mater. 13 (2023) 2204245.

    103. [103]

      Q. Chen, X. Wang, Y. Zhou, et al., Adv. Mater. 36 (2024) 2303902.

    104. [104]

      X. Wang, Q. Chen, Y. Zhou, et al., Nano Res. 17 (2024) 1101–1106.  doi: 10.1007/s12274-023-5910-9

    105. [105]

      C.T. Dinh, F.P. García de Arquer, D. Sinton, et al., ACS Energy Lett. 3 (2018) 2835–2840.  doi: 10.1021/acsenergylett.8b01734

    106. [106]

      T. Li, E.W. Lees, Z. Zhang, et al., ACS Energy Lett. 5 (2020) 2624–2630.  doi: 10.1021/acsenergylett.0c01291

    107. [107]

      F. Li, A. Thevenon, A. Rosas-Hernández, et al., Nature 577 (2020) 509–513.  doi: 10.1038/s41586-019-1782-2

    108. [108]

      W. Ma, S. Xie, T. Liu, et al., Nat. Catal. 3 (2020) 478–487.  doi: 10.1038/s41929-020-0450-0

    109. [109]

      J. Li, S. Chen, F. Quan, et al., Chem 6 (2020) 885–901.  doi: 10.3390/polym12040885

    110. [110]

      L. Zeng, X. Li, S. Chen, et al., Nanoscale 12 (2020) 6029–6036.  doi: 10.1039/c9nr09624h

    111. [111]

      P. Jeanty, C. Scherer, E. Magori, et al., J. CO2 Util. 24 (2018) 454–462.

    112. [112]

      M. de Jesus Gálvez-Vázquez, P. Moreno-García, H. Xu, et al., ACS Catal. 10 (2020) 13096–13108.  doi: 10.1021/acscatal.0c03609

    113. [113]

      R. Jiang, V.S. Parameshwaran, J. Boltersdorf, et al., ACS Appl. Energy Mater. 6 (2023) 10475–10486.  doi: 10.1021/acsaem.3c01605

    114. [114]

      W. Lee, Y.E. Kim, M.H. Youn, et al., Angew. Chem. Int. Ed. 57 (2018) 6883–6887.  doi: 10.1002/anie.201803501

    115. [115]

      C. Ampelli, C. Genovese, B.C. Marepally, et al., Faraday Discuss. 183 (2015) 125–145.

    116. [116]

      C. Genovese, C. Ampelli, S. Perathoner, et al., J. Catal. 308 (2013) 237–249.

    117. [117]

      B.C. Marepally, C. Ampelli, C. Genovese, et al., ChemSusChem 10 (2017) 4442–4446.  doi: 10.1002/cssc.201701506

    118. [118]

      Q. Ye, X. Zhao, R. Jin, et al., J. Mater. Chem. A 11 (2023) 21498–21515.  doi: 10.1039/d3ta03757f

    119. [119]

      F. Habibzadeh, P. Mardle, N. Zhao, et al., Electrochem. Energy Rev. 6 (2023) 26.

    120. [120]

      G. Li, L. Huang, C. Wei, et al., Angew. Chem. Int. Ed. 63 (2024) e202400414.

    121. [121]

      J.E. Huang, F. Li, A. Ozden, et al., Science 372 (2021) 1074–1078.  doi: 10.1126/science.abg6582

    122. [122]

      P.W. Bai, W.P. Liang, Y. Lv, et al., Ind. Eng, Chem. Res. 62 (2023) 21787–21801.  doi: 10.1021/acs.iecr.3c02283

    123. [123]

      Z. Xing, L. Hu, D.S. Ripatti, et al., Nat. Commun. 12 (2021) 136.

    124. [124]

      R. Shi, J. Guo, X. Zhang, et al., Nat. Commun. 11 (2020) 3028.

    125. [125]

      J.Y.T. Kim, P. Zhu, F.Y. Chen, et al., Nat. Catal. 5 (2022) 288–299.

    126. [126]

      A. Luthfiah, C.W. Lee, ChemCatChem 15 (2023) e202300702.

    127. [127]

      L. Zhang, S. Hu, X. Zhu, et al., J. Energy Chem. 26 (2017) 593–601.  doi: 10.1007/s11431-016-0558-1

    128. [128]

      B.D. Cardoso, E.M.S. Castanheira, S. Lanceros-Méndez, et al., Adv. Healthc. Mater. 12 (2023) 2202936.

    129. [129]

      F. Mei, H. Lin, L. Hu, et al., Smart Mol. 1 (2023) e20220001.

    130. [130]

      R.S. Jayashree, L. Gancs, E.R. Choban, et al., J. Am. Chem. Soc. 127 (2005) 16758–16759.  doi: 10.1021/ja054599k

    131. [131]

      H. Liu, Y. Liu, X. Yu, et al., Small 20 (2023) e2309344.

  • 加载中
    1. [1]

      Jiayu LiBinli WangYu LuoHongyu WangLei Zhang . The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2025, 36(8): 110220-. doi: 10.1016/j.cclet.2024.110220

    2. [2]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    3. [3]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    4. [4]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    5. [5]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    6. [6]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    7. [7]

      Tong PengYupeng XingLan MuChenggang WangNing ZhaoWenbo LiaoJianlei LiGang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    11. [11]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    12. [12]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    13. [13]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    14. [14]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    15. [15]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    16. [16]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    17. [17]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    18. [18]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    19. [19]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    20. [20]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return