Tailoring mass transfer on electrochemical fixation of air-abundant molecules
-
* Corresponding author.
E-mail address: wutongbo@hust.edu.cn (H. Wang).
Citation:
Xiaoyu Du, Huan Wang. Tailoring mass transfer on electrochemical fixation of air-abundant molecules[J]. Chinese Chemical Letters,
;2025, 36(8): 110276.
doi:
10.1016/j.cclet.2024.110276
Z. Lin, C. Han, G.E.P. O'Connell, et al., Angew. Chem. Int. Ed. 62 (2023) e202301435.
J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) eaar6611.
N. Tanjedrew, K. Thammanatpong, P. Surawatanawong, et al., Chem. Eur. J. 30 (2024) e202302854.
M.B. Ross, P. De Luna, Y. Li, et al., Nat. Catal. 2 (2019) 648–658.
doi: 10.1038/s41929-019-0306-7
P. Tian, J. Su, Y. Song, et al., Trans. Tianjin Univ. 28 (2022) 73–79.
doi: 10.1007/s12209-021-00305-8
X. Tian, X.F. Lu, B.Y. Xia, et al., Joule 4 (2020) 45–68.
B.M. Ceballos, G. Pilania, K.P. Ramaiyan, et al., Curr. Opin. Electrochem. 28 (2021) 100723.
Z. Wang, Y. Zhou, P. Qiu, et al., Adv. Mater. 35 (2023) 2303052.
X. Wang, J. Zhang, P. Wang, et al., Energy Environ. Sci. 16 (2023) 5500–5512.
doi: 10.1039/d3ee02503a
B. Chang, H. Pang, F. Raziq, et al., Energy Environ. Sci. 16 (2023) 4714–4758.
doi: 10.1039/d3ee00964e
D. Wang, X.F. Lu, D. Luan, et al., Adv. Mater. 36 (2024) 2312645.
M.G. Kibria, J.P. Edwards, C.M. Gabardo, et al., Adv. Mater. 31 (2019) 1807166.
W. Xing, M. Yin, Q. Lv, et al., Oxygen solubility, diffusion coefficient, and solution viscosity, in: W. Xing, G. Yin, J. Zhang Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, Amsterdam, 2014, 1–31.
X. Shen, S. Liu, X. Xia, et al., Adv. Funct. Mater. 32 (2022) 2109422.
T. Burdyny, W.A. Smith, Energy Environ. Sci. 12 (2019) 1442–1453.
doi: 10.1039/c8ee03134g
O.A. Ojelade, S.F. Zaman, B.J. Ni, J. Environ. Manage. 342 (2023) 118348.
I. Staffell, D. Scamman, A. Velazquez Abad, et al., Energy Environ. Sci. 12 (2019) 463–491.
doi: 10.1039/c8ee01157e
W. Lai, Y. Qiao, Y. Wang, et al., Adv. Mater. 35 (2023) 2306288.
Á. Molina, I. Morales, M. López-Tenés, Electrochem. Commun. 8 (2006) 1062–1070.
P. Chauhan, J. Herranz, M. Winzely, et al., J. Phys. Chem. C 127 (2023) 16453–16463.
doi: 10.1021/acs.jpcc.3c04233
N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 36 (2006) 161–172.
doi: 10.1007/s10800-005-9058-y
R. Kas, K. Yang, D. Bohra, et al., Chem. Sci. 11 (2020) 1738–1749.
doi: 10.1039/c9sc05375a
X. Jiang, Y. Chen, X. Zhang, et al., ChemSusChem 15 (2022) e202201551.
S.S. Bhargava, D. Azmoodeh, X. Chen, et al., ACS Energy Lett. 6 (2021) 2427–2433.
doi: 10.1021/acsenergylett.1c01029
J. Pan, P. Li, X. Jiang, et al., Mater. Today Phys. 35 (2023) 101096.
L. Huang, G. Gao, C. Yang, et al., Nat. Commun. 14 (2023) 2958.
G. Wang, J. Chen, Y. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993–5061.
doi: 10.1039/d0cs00071j
R. Battino, T.R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data 13 (1984) 563–600.
E. Hosono, S. Fujihara, I. Honma, et al., J. Mater. Chem. 15 (2005) 1938–1945.
doi: 10.1039/b418955h
S. Kaneco, K. Iiba, H. Katsumata, et al., J. Solid State Electrochem. 11 (2007) 490–495.
doi: 10.1007/s10008-006-0185-0
M. Moura de Salles Pupo, R. Kortlever, ChemPhysChem 20 (2019) 2926–2935.
doi: 10.1002/cphc.201900680
R.N. Itoe, G.D. Wesson, E.E. Kalu, J. Electrochem. Soc. 147 (2000) 2445.
Q. Shi, Y. He, X. Bai, et al., Energy Environ. Sci. 13 (2020) 3544–3555.
doi: 10.1039/d0ee01968b
Y. Ren, C. Yu, X. Han, et al., ACS Energy Lett. 6 (2021) 3844–3850.
doi: 10.1021/acsenergylett.1c01893
D. Krishnamurthy, N. Lazouski, M.L. Gala, et al., ACS Cent. Sci. 7 (2021) 2073–2082.
doi: 10.1021/acscentsci.1c01151
J.L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc. 135 (2013) 8798–8801.
doi: 10.1021/ja4033549
J. Medina-Ramos, R.C. Pupillo, T.P. Keane, et al., J. Am. Chem. Soc. 137 (2015) 5021–5027.
doi: 10.1021/ja5121088
S. Piontek, K. junge Puring, D. Siegmund, et al., Chem. Sci. 10 (2019) 1075–1081.
doi: 10.1039/c8sc03555e
Y. Oh, H. Vrubel, S. Guidoux, et al., Chem. Commun. 50 (2014) 3878–3881.
doi: 10.1039/c3cc49262a
B. Eneau-Innocent, D. Pasquier, F. Ropital, et al., Appl. Catal. B 98 (2010) 65–71.
H.K. Lee, C.S.L. Koh, Y.H. Lee, et al., Sci. Adv. 4 (2018) eaar3208.
T. Mairegger, H. Li, C. Grießer, et al., ACS Catal. 13 (2023) 5780–5786.
doi: 10.1021/acscatal.3c00236
N.E. Mendieta-Reyes, A.K. Díaz-García, R. Gómez, ACS Catal. 8 (2018) 1903–1912.
doi: 10.1021/acscatal.7b03047
G. Lee, Y.C. Li, J.Y. Kim, et al., Nat. Energy 6 (2021) 46–53.
Y. Cui, B. He, X. Liu, et al., Ind. Eng, Chem. Res. 59 (2020) 20235–20252.
doi: 10.1021/acs.iecr.0c04037
Y. Tian, Y. Liu, H. Wang, et al., ACS Sustain. Chem. Eng. 10 (2022) 4345–4358.
doi: 10.1021/acssuschemeng.2c00018
B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, et al., Science 334 (2011) 643–644.
doi: 10.1126/science.1209786
F. Zhou, L.M. Azofra, M. Ali, et al., Energy Environ. Sci. 10 (2017) 2516–2520.
N. Dubouis, A. Serva, R. Berthin, et al., Nat. Catal. 3 (2020) 656–663.
doi: 10.1038/s41929-020-0482-5
S. Garg, M. Li, A.Z. Weber, et al., J. Mater. Chem. A 8 (2020) 1511–1544.
doi: 10.1039/c9ta13298h
P. Li, Y. Jiang, Y. Hu, et al., Nat. Catal. 5 (2022) 900–911.
doi: 10.1038/s41929-022-00846-8
A.H. Shah, Z. Zhang, Z. Huang, et al., Nat. Catal. 5 (2022) 923–933.
doi: 10.1038/s41929-022-00851-x
H. Le, C. Lin, E. Kätelhön, et al., Electrochim. Acta 298 (2019) 778–787.
Y. Liu, H. Jiang, Z. Hou, Chem. Eur. J. 27 (2021) 17726–17735.
doi: 10.1002/chem.202102764
J. Gu, S. Liu, W. Ni, et al., Nat. Catal. 5 (2022) 268–276.
doi: 10.1038/s41929-022-00761-y
I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, et al., Nat. Energy 2 (2017) 17031.
J. Hou, B. Xu, Q. Lu, Nat. Commun. 15 (2024) 1926.
X. Mao, T. He, G. Kour, et al., Chem. Sci. 15 (2024) 3330–3338.
doi: 10.1039/d3sc06471a
H. Lee, H. Ren, J. Am. Chem. Soc. 146 (2024) 11126–11132.
X. Sun, S. Wang, Y. Hou, et al., J. Mater. Chem. A 11 (2023) 13089–13106.
doi: 10.1039/d3ta01903a
B. Zhao, H. Luo, J. Liu, et al., Chin. Chem. Lett. 36 (2025) 109919.
B. Su, M. Zheng, W. Lin, et al., Adv. Energy Mater. 13 (2023) 2203290.
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732–745.
doi: 10.1038/s41560-019-0450-y
Y. Zhai, P. Han, Q. Yun, et al., eScience 2 (2022) 467–485.
J. Yuan, J. Zou, Z. Wu, et al., Nanotechnology 35 (2024) 175402.
doi: 10.1088/1361-6528/ad0301
Z.Y. Zhang, H.B. Wang, F.F. Zhang, et al., Rare Met. 43 (2024) 1513–1523.
doi: 10.1007/s12598-023-02527-2
X. Chen, Y. Zhao, J. Han, et al., Chempluschem 88 (2023) e202200370.
X. Lv, F. Wang, J. Du, et al., Sustain. Energy Fuels 4 (2020) 4469–4472.
doi: 10.1039/d0se00828a
L. Zhang, S. Chen, Y. Dai, et al., ChemCatChem 10 (2018) 925–930.
doi: 10.1002/cctc.201701578
C. Choi, S. Kwon, T. Cheng, et al., Nat. Catal. 3 (2020) 804–812.
doi: 10.1038/s41929-020-00504-x
S. Shen, J. He, X. Peng, et al., J. Mater. Chem. A 6 (2018) 18960–18966.
doi: 10.1039/c8ta04758h
P. Li, Z. Jin, Z. Fang, et al., Angew. Chem. Int. Ed. 59 (2020) 22610–22616.
doi: 10.1002/anie.202011596
S. Liu, L. Song, R. Liu, et al., Small 19 (2023) 2304808.
H. Wang, G. Zhan, C. Tang, et al., ACS Nano 17 (2023) 4790–4799.
doi: 10.1021/acsnano.2c11227
X. Zhang, D. Xue, S. Jiang, et al., InfoMat 4 (2022) e12257.
A. Robb, A. Ozden, R.K. Miao, et al., ACS Appl. Mater. Interfaces 14 (2022) 4155–4162.
doi: 10.1021/acsami.1c21386
H.Q. Liang, S. Zhao, X.M. Hu, et al., ACS Catal. 11 (2021) 958–966.
doi: 10.1021/acscatal.0c03766
T. Kwon, S. Prabhakaran, D.H. Kim, et al., Chem. Eng. J. 485 (2024) 150045.
Z.Z. Niu, F.Y. Gao, X.L. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 8011–8021.
doi: 10.1021/jacs.1c01190
L. Xue, X. Wu, Y. Liu, et al., Nano Res. 15 (2022) 1393–1398.
doi: 10.1007/s12274-021-3675-6
P.P. Yang, M.R. Gao, Chem. Soc. Rev. 52 (2023) 4343–4380.
doi: 10.1039/d2cs00849a
P.P. Yang, X.L. Zhang, F.Y. Gao, et al., J. Am. Chem. Soc. 142 (2020) 6400–6408.
doi: 10.1021/jacs.0c01699
T.T. Zhuang, Y. Pang, Z.Q. Liang, et al., Nat. Catal. 1 (2018) 946–951.
doi: 10.1038/s41929-018-0168-4
M. Nazemi, M.A. El-Sayed, J. Phys. Chem. Lett. 9 (2018) 5160–5166.
doi: 10.1021/acs.jpclett.8b02188
Y. Cheng, H. Lu, K. Zhang, et al., Carbon N Y 128 (2018) 38–45.
M. Liu, Y. Pang, B. Zhang, et al., Nature 537 (2016) 382–386.
doi: 10.1038/nature19060
F.Y. Gao, S.J. Hu, X.L. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 8706–8712.
doi: 10.1002/anie.201912348
C. Li, S. Mou, X. Zhu, et al., Chem. Commun. 55 (2019) 14474–14477.
doi: 10.1039/c9cc08234d
F. Wang, X. Lv, X. Zhu, et al., Chem. Commun. 56 (2020) 2107–2110.
doi: 10.1039/c9cc09803h
J.C. Dong, X.G. Zhang, V. Briega-Martos, et al., Nat. Energy 4 (2019) 60–67.
R.B. Sandberg, J.H. Montoya, K. Chan, et al., Surf. Sci. 654 (2016) 56–62.
Y. Wang, P. Han, X. Lv, et al., Joule 2 (2018) 2551–2582.
D. Bao, Q. Zhang, F.L. Meng, et al., Adv. Mater. 29 (2017) 1604799.
A.M. Gómez-Marín, J.M. Feliu, Catal. Today 244 (2015) 172–176.
Y. Gao, Q. Wu, X. Liang, et al., Adv. Sci. 7 (2020) 1902820.
H. Jin, L. Li, X. Liu, et al., Adv. Mater. 31 (2019) 1902709.
X. Wang, K. Klingan, M. Klingenhof, et al., Nat. Commun. 12 (2021) 794.
J. Du, A. Chen, S. Hou, et al., Carbon Energy 4 (2022) 1274–1284.
doi: 10.1002/cey2.223
C. Du, C. Qiu, Z. Fang, et al., Nano Energy 92 (2022) 106784.
K. Tang, H. Hu, Y. Xiong, et al., Angew. Chem. Int. Ed. 61 (2022) e202202671.
G. Xu, H. Li, A.S.R. Bati, et al., J. Mater. Chem. A 8 (2020) 15875–15883.
doi: 10.1039/d0ta03237a
L. Yan, B. Xie, C. Yang, et al., Adv. Energy Mater. 13 (2023) 2204245.
Q. Chen, X. Wang, Y. Zhou, et al., Adv. Mater. 36 (2024) 2303902.
X. Wang, Q. Chen, Y. Zhou, et al., Nano Res. 17 (2024) 1101–1106.
doi: 10.1007/s12274-023-5910-9
C.T. Dinh, F.P. García de Arquer, D. Sinton, et al., ACS Energy Lett. 3 (2018) 2835–2840.
doi: 10.1021/acsenergylett.8b01734
T. Li, E.W. Lees, Z. Zhang, et al., ACS Energy Lett. 5 (2020) 2624–2630.
doi: 10.1021/acsenergylett.0c01291
F. Li, A. Thevenon, A. Rosas-Hernández, et al., Nature 577 (2020) 509–513.
doi: 10.1038/s41586-019-1782-2
W. Ma, S. Xie, T. Liu, et al., Nat. Catal. 3 (2020) 478–487.
doi: 10.1038/s41929-020-0450-0
J. Li, S. Chen, F. Quan, et al., Chem 6 (2020) 885–901.
doi: 10.3390/polym12040885
L. Zeng, X. Li, S. Chen, et al., Nanoscale 12 (2020) 6029–6036.
doi: 10.1039/c9nr09624h
P. Jeanty, C. Scherer, E. Magori, et al., J. CO2 Util. 24 (2018) 454–462.
M. de Jesus Gálvez-Vázquez, P. Moreno-García, H. Xu, et al., ACS Catal. 10 (2020) 13096–13108.
doi: 10.1021/acscatal.0c03609
R. Jiang, V.S. Parameshwaran, J. Boltersdorf, et al., ACS Appl. Energy Mater. 6 (2023) 10475–10486.
doi: 10.1021/acsaem.3c01605
W. Lee, Y.E. Kim, M.H. Youn, et al., Angew. Chem. Int. Ed. 57 (2018) 6883–6887.
doi: 10.1002/anie.201803501
C. Ampelli, C. Genovese, B.C. Marepally, et al., Faraday Discuss. 183 (2015) 125–145.
C. Genovese, C. Ampelli, S. Perathoner, et al., J. Catal. 308 (2013) 237–249.
B.C. Marepally, C. Ampelli, C. Genovese, et al., ChemSusChem 10 (2017) 4442–4446.
doi: 10.1002/cssc.201701506
Q. Ye, X. Zhao, R. Jin, et al., J. Mater. Chem. A 11 (2023) 21498–21515.
doi: 10.1039/d3ta03757f
F. Habibzadeh, P. Mardle, N. Zhao, et al., Electrochem. Energy Rev. 6 (2023) 26.
G. Li, L. Huang, C. Wei, et al., Angew. Chem. Int. Ed. 63 (2024) e202400414.
J.E. Huang, F. Li, A. Ozden, et al., Science 372 (2021) 1074–1078.
doi: 10.1126/science.abg6582
P.W. Bai, W.P. Liang, Y. Lv, et al., Ind. Eng, Chem. Res. 62 (2023) 21787–21801.
doi: 10.1021/acs.iecr.3c02283
Z. Xing, L. Hu, D.S. Ripatti, et al., Nat. Commun. 12 (2021) 136.
R. Shi, J. Guo, X. Zhang, et al., Nat. Commun. 11 (2020) 3028.
J.Y.T. Kim, P. Zhu, F.Y. Chen, et al., Nat. Catal. 5 (2022) 288–299.
A. Luthfiah, C.W. Lee, ChemCatChem 15 (2023) e202300702.
L. Zhang, S. Hu, X. Zhu, et al., J. Energy Chem. 26 (2017) 593–601.
doi: 10.1007/s11431-016-0558-1
B.D. Cardoso, E.M.S. Castanheira, S. Lanceros-Méndez, et al., Adv. Healthc. Mater. 12 (2023) 2202936.
F. Mei, H. Lin, L. Hu, et al., Smart Mol. 1 (2023) e20220001.
R.S. Jayashree, L. Gancs, E.R. Choban, et al., J. Am. Chem. Soc. 127 (2005) 16758–16759.
doi: 10.1021/ja054599k
H. Liu, Y. Liu, X. Yu, et al., Small 20 (2023) e2309344.
Jiayu Li , Binli Wang , Yu Luo , Hongyu Wang , Lei Zhang . The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2025, 36(8): 110220-. doi: 10.1016/j.cclet.2024.110220
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Tong Peng , Yupeng Xing , Lan Mu , Chenggang Wang , Ning Zhao , Wenbo Liao , Jianlei Li , Gang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053