Citation: Yangping Zhang, Tianpeng Liu, Jun Yu, Zhengying Wu, Dongqiong Wang, Yukou Du. Amorphous/crystalline AgS@CoS core@shell catalysts for efficient oxygen evolution reaction[J]. Chinese Chemical Letters, ;2025, 36(8): 110275. doi: 10.1016/j.cclet.2024.110275 shu

Amorphous/crystalline AgS@CoS core@shell catalysts for efficient oxygen evolution reaction

    * Corresponding authors.
    E-mail addresses: zywu@mail.usts.edu.cn (Z. Wu), duyk@suda.edu.cn (Y. Du).
  • Received Date: 24 June 2024
    Revised Date: 11 July 2024
    Accepted Date: 16 July 2024
    Available Online: 20 July 2024

Figures(5)

  • The core@shell structure materials with the synergistic effect have been confirmed as promising catalysts for oxygen evolution reaction (OER). However, the conventional catalysts with crystalline phase suffer from deficient active sites, elemental dissolution, and structural collapse during OER catalysis, which results in the limited OER performance. Herein, we introduced the amorphous phase structure by controllable wet-chemical sulfuration strategy, thus to prepare the amorphous/crystalline (a/c) AgS@CoS core@shell catalysts. Benefitting from the core@shell construction with synergistic interaction, a/c heterophase with well-balanced catalytic activity and stability, favorable sulfides components with positive oxysulfide reconstructed layer formation, the optimized AgS@CoS-2 catalysts displayed superior OER catalytic behaviors with a low overpotential of 260 mV and Tafel slope of 64.4 mV/dec on the current density of 10 mA/cm2, surpassing the counterpart catalysts and commercial RuO2 catalysts. Meanwhile, the AgS@CoS-2 catalysts possessed remarkable OER catalytic stability, as well as the favorable overall water splitting performance.
  • 加载中
    1. [1]

      M. Luo, Z. Zhao, Y. Zhang, et al., Nature 574 (2019) 81–85.  doi: 10.1038/s41586-019-1603-7

    2. [2]

      Y. Liu, E.H. Ang, X. Zhong, et al., J. Colloid Interface Sci. 652 (2023) 418–428.

    3. [3]

      Y. Zhang, D. Wang, C. Ye, et al., Chem. Eng. J. 466 (2023) 143059.

    4. [4]

      H. Zhu, R. Du, H. Zhao, et al., J. Mater. Chem. A 12 (2024) 8487–8501.  doi: 10.1039/d3ta07853a

    5. [5]

      Y. Wang, L. Yan, K. Dastafkan, et al., Adv. Mater. 34 (2022) 2006351.

    6. [6]

      Y. Chen, P. Liao, K. Jin, et al., Inorg. Chem. Front. 10 (2023) 6489–6505.  doi: 10.1039/d3qi01468a

    7. [7]

      J. Yang, Y. Shen, Y. Sun, et al., Angew. Chem. Int. Ed. 62 (2023) 202302220.

    8. [8]

      F. Gao, Y. Zhang, Z. Wu, H. You, Y. Du, Coord. Chem. Rev. 436 (2021) 214244.

    9. [9]

      F. Gao, Y. Zhang, F. Ren, Y. Shiraishi, Y. Du, Adv. Funct. Mater. 30 (2020) 2000255.

    10. [10]

      T. Hu, F. Zhu, J.J. Xia, et al., Adv. Funct. Mater. 33 (2023) 2305567.

    11. [11]

      Y. Bai, C. Liu, Y. Shan, et al., Adv. Energy Mater. 12 (2021) 2100346.

    12. [12]

      Y. Hao, Q. Liu, Y. Zhou, et al., Energy Environ. Mater. 2 (2019) 18–21.  doi: 10.1002/eem2.12024

    13. [13]

      R.A. Acedera, A.T. Dumlao, D.J.D. Matienzo, et al., J. Energy Chem. 89 (2024) 646–669.

    14. [14]

      R. He, C. Wang, L. Feng, Chin. Chem. Lett. 34 (2022) 107241.

    15. [15]

      Z. Chen, C. Lu, Y. Zhuo, et al., Scr. Mater. 235 (2023) 115626.

    16. [16]

      M. Guo, R. Deng, C. Wang, Q. Zhang, J. Energy Chem. 78 (2023) 537–553.

    17. [17]

      Y. Zhang, F. Gao, D. Wang, et al., Coord. Chem. Rev. 475 (2023) 214916.

    18. [18]

      P. Ding, H.Q. Song, J.W. Chang, S.Y. Lu, Nano Res. 15 (2022) 7063–7070.  doi: 10.1007/s12274-022-4377-4

    19. [19]

      D.P. Sahoo, K.K. Das, S. Mansingh, S. Sultana, K. Parida, Coord. Chem. Rev. 469 (2022) 214666.

    20. [20]

      J.N. Song, Y. Chen, H.J. Huang, et al., Adv. Sci. 9 (2022) 2104522.

    21. [21]

      Q. Shi, H.A. Guo, D.L. Ou, et al., J. Energy Storage 72 (2023) 108073.

    22. [22]

      H. Xu, X. Niu, Z. Liu, et al., Small 17 (2021) 2103064.

    23. [23]

      M. Zhang, Y. Zhang, L. Ye, B. Guo, Y. Gong, Appl. Catal. B: Environ. 298 (2021) 120601.

    24. [24]

      Y. Deng, H. Liu, X. Wei, et al., J. Colloid. Interface Sci. 585 (2021) 800–807.

    25. [25]

      C. Lee, C. Lee, K. Shin, et al., Catal. Commun. 129 (2019) 105749.

    26. [26]

      J. Liu, G. Qian, H. Zhang, et al., Chem. Eng. J. 426 (2021) 131253.

    27. [27]

      H. Han, H. Choi, S. Mhin, et al., Energy Environ. Sci. 12 (2019) 2443–2454.  doi: 10.1039/c9ee00950g

    28. [28]

      Y. Zhang, F. Gao, H. You, et al., Coord. Chem. Rev. 450 (2022) 214244.

    29. [29]

      M. Kuang, J. Zhang, D. Liu, et al., Adv. Energy Mater. 10 (2020) 2002215.

    30. [30]

      Z. Xiong, B. Sun, H. Zou, et al., J. Am. Chem. Soc. 144 (2022) 6583–6593.  doi: 10.1021/jacs.2c02089

    31. [31]

      J. Bak, T.G. Yun, J.S. An, H.B. Bae, S.Y. Chung, Energy Environ. Sci. 15 (2022) 610–620.  doi: 10.1039/d1ee01826d

    32. [32]

      Z. Gu, X. Wei, X. Zhang, et al., Small 17 (2021) 2104125.

    33. [33]

      Y. Lei, L. Zhang, W. Xu, et al., Nano Res. 15 (2022) 6054–6061.  doi: 10.1007/s12274-022-4304-8

    34. [34]

      X. Yu, W. Zhang, L. She, et al., Chem. Eng. J. 430 (2022) 133073.

    35. [35]

      Z. Li, X. Zhang, Y. Kang, et al., Adv. Sci. 8 (2021) 2002631.

    36. [36]

      Y.J. Jiang, T.Y. Chen, J.L. Chen, et al., Adv. Mater. 36 (2023) 2306910.

    37. [37]

      W. Cheng, H. Zhang, D. Luan, X.W. Lou, Sci. Adv. 7 (2021) eabg2580.

    38. [38]

      C. Qiu, F. Cai, Y. Wang, et al., J. Colloid Interface Sci. 565 (2020) 351–359.

    39. [39]

      P. Geng, S. Cao, X. Guo, et al., J. Mater. Chem. A 7 (2019) 19465–19470.  doi: 10.1039/c9ta05812e

    40. [40]

      X. Liu, Y. Zhang, M. Li, X. Dong, B. Wang, J. Hazard Mater. 426 (2022) 128098.

    41. [41]

      P.X. Zhang, S.L. Liu, J.J. Zhou, et al., Small 20 (2023) 2307662.

    42. [42]

      M. Duan, S. Liu, Q. Jiang, et al., Chin. Chem. Lett. 33 (2022) 4428–4436.

    43. [43]

      S.K. Li, H.R. Chai, L. Zhang, et al., J. Colloid Interface Sci. 642 (2023) 235–245.

    44. [44]

      Y. Tian, X. Liu, L. Xu, et al., Adv. Funct. Mater. 31 (2021) 2101239.

    45. [45]

      X. Guo, M. Duan, J. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2209397.

    46. [46]

      N. Guo, H. Xue, A. Bao, et al., Angew. Chem. Int. Ed. 59 (2020) 13778–13784.  doi: 10.1002/anie.202002394

    47. [47]

      Y. Hu, Y. Zheng, J. Jin, et al., Nat. Commun. 14 (2023) 1949.

    48. [48]

      X. Liu, J. Meng, J. Zhu, et al., Adv. Mater. 33 (2021) 2007344.

    49. [49]

      Y. Zhang, X. Zheng, X. Guo, et al., Appl. Catal. B: Environ. 336 (2023) 122891.

    50. [50]

      G. Zhang, J. Zeng, J. Yin, et al., Appl. Catal B: Environ. 286 (2021) 119902.

    51. [51]

      D. Yang, Z. Su, Y. Chen, et al., Chem. Eng. J. 430 (2022) 133046.

  • 加载中
    1. [1]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    2. [2]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    3. [3]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Gen ZhangYing GuLin LiFuli MaDan YueXiaoguang ZhouChungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Xiaxi YaoXiuli HuFangcheng HuangXuhong WangXuekun HongDawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192

    8. [8]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    9. [9]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    10. [10]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    11. [11]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    12. [12]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    13. [13]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    14. [14]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    15. [15]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    16. [16]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    17. [17]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    18. [18]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    19. [19]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    20. [20]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return