Citation: Jiayu Li, Binli Wang, Yu Luo, Hongyu Wang, Lei Zhang. The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review[J]. Chinese Chemical Letters, ;2025, 36(8): 110220. doi: 10.1016/j.cclet.2024.110220 shu

The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review

Figures(8)

  • In the realm of advanced electrochemical energy storage, the study of diverse electrolyte salts as integral components of electrolyte engineering has garnered immense attention. Notably, lithium di(fluoro)oxalateborate (LiDFOB) as the representative DFOB contained electrolyte salts, which possesses structural attributes resembling both lithium bis(oxalate)borate (LiBOB) and lithium tetrafluoroborate (LiBF4), has garnered significant attention initially as a classical additive for the formation of solid electrolyte interface (SEI) films in graphite anodes. However, its unique properties have also piqued interest in other battery components, encompassing current collectors, capacity-enhanced cathodes or anodes, polymer solid-state electrolytes, and the full batteries. The introduction of LiDFOB or NaDFOB into these batteries exhibits a dual-faceted effect, with the beneficial aspect outweighing the potential drawbacks. Herein, we present a comprehensive overview of the research advancements surrounding LiDFOB, including the synthesis techniques of LiDFOB, the inherent properties of LiDFOB and LiDFOB-based electrolyte solutions, and the impact of LiDFOB on the performance of traditional graphite anodes, capacity-enlarged anodes, various classic cathodes, and the full batteries. And sectional content is about the usage of NaDFOB in Na-ion batteries. This review aims to aid readers in understanding the pivotal role of LiDFOB and NaDFOB as a constituent of electrolytes and how its utilization can influence electrode materials and other components, ultimately altering the electrochemical energy storage device's performance.
  • 加载中
    1. [1]

      T. Ohzuku, Y. Iwakoshi, K. Sawai, J. Electrochem. Soc. 140 (1993) 2490–2498.  doi: 10.1149/1.2220849

    2. [2]

      K. Xu, Chem. Rev. 104 (2004) 4303–4417.

    3. [3]

      K. Xu, Chem. Rev. 114 (2014) 11503–11618.  doi: 10.1021/cr500003w

    4. [4]

      J. Huang, Y. Zhu, Y. Feng, et al., Acta Phys. Chim. Sin. 38 (2022) 2208008.  doi: 10.3866/pku.whxb202208008

    5. [5]

      T. Placke, O. Fromm, S.F. Lux, et al., J. Electrochem. Soc. 159 (2012) A1755–A1765.  doi: 10.1149/2.011211jes

    6. [6]

      H. Fan, J. Gao, L. Qi, H. Wang, Electrochim. Acta 189 (2016) 9–15.

    7. [7]

      L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.  doi: 10.1126/science.aab1595

    8. [8]

      H. Li, T. Kurihara, D. Yang, et al., Energy Storage Mater. 38 (2021) 454–461.

    9. [9]

      J. Yin, C. Zheng, L. Qi, H. Wang, J. Power Sources 196 (2011) 4080–4087.

    10. [10]

      Y. Liao, H. Zhang, Y. Peng, et al., Adv. Energy Mater. 14 (2024) 2304295.

    11. [11]

      L. Zheng, H. Zhang, P. Cheng, et al., Electrochim. Acta 196 (2016) 169–188.

    12. [12]

      P.V. Chombo, Y. Laoonual, J. Power Sources 478 (2020) 228649.

    13. [13]

      Z. Song, L. Zheng, P. Cheng, et al., J. Power Sources 526 (2022) 231105.

    14. [14]

      V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Chem. Eur. J. 17 (2011) 14326–14346.  doi: 10.1002/chem.201101486

    15. [15]

      H.B. Han, S.S. Zhou, D.J. Zhang, et al., J. Power Sources 196 (2011) 3623–3632.

    16. [16]

      L. Zhou, W. Li, M. Xu, B. Lucht, Electrochem. Solid-State Lett. 14 (2011) A161–A164.  doi: 10.1149/2.016111esl

    17. [17]

      H.M. Zhou, K.W. Xiao, J. Li, et al., J. Cent. South Univ. 25 (2018) 550–560.  doi: 10.1007/s11771-018-3760-5

    18. [18]

      S.D. Han, J.L. Allen, E. Jónsson, et al., J. Phys. Chem. C 117 (2013) 5521–5531.  doi: 10.1021/jp309102c

    19. [19]

      S.S. Zhang, Electrochem. Commun. 8 (2006) 1423–1428.  doi: 10.1002/ejic.200500883

    20. [20]

      J. Li, K. Xie, Y. Lai, et al., J. Power Sources 195 (2010) 5344–5350.

    21. [21]

      H. Chen, B. Liu, Y. Wang, et al., J. Alloys Com. 876 (2021) 159966.

    22. [22]

      N. Azimi, Z. Xue, L. Hu, et al., Electrochim. Acta 154 (2015) 205–210.

    23. [23]

      S. Lin, J. Zhao, ACS Appl. Mater. Inter. 12 (2020) 8316–8323.  doi: 10.1021/acsami.9b21679

    24. [24]

      X. Meng, J. Qin, Y. Liu, et al., Chem. Eng. J. 465 (2023) 142913.

    25. [25]

      J. Zhang, H. Zhang, L. Deng, et al., Energy Storage Mater. 54 (2023) 450–460.  doi: 10.3390/s23010450

    26. [26]

      K. Wang, Z. Liang, S. Weng, et al., ACS Energy Lett. 8 (2023) 3450–3459.

    27. [27]

      Q. Zhao, Y. Wu, Z. Yang, et al., Chem. Eng. J. 440 (2022) 135939.

    28. [28]

      A. Xiao, L. Yang, B.L. Lucht, et al., J. Electrochem. Soc. 156 (2009) A318–A327.  doi: 10.1149/1.3078020

    29. [29]

      A. Gutierrez, M. He, B.T. Yonemoto, et al., J. Electrochem. Soc. 166 (2019) A3896–A3907.  doi: 10.1149/2.1281915jes

    30. [30]

      C. Poches, A.A. Razzaq, H. Studer, et al., ACS Appl. Mater. Inter. 15 (2023) 43648–43655.  doi: 10.1021/acsami.3c06586

    31. [31]

      J. Li, H. Zhou, F. Liu, Chinese Patent, CN102070661B, 2011.

    32. [32]

      M. Xia, J. Li, H. Zhou, Chinese Patent, CN106749361A, 2016.

    33. [33]

      F. Yan, S. Zhang, K. Wang, et al., Chinese Patent, CN109678898A, 2019.

    34. [34]

      X. Li, X. Wu, Z. Wang, et al., Chinese Patent, CN102702243B, 2012.

    35. [35]

      X. Min, C. Chen, Chinese Patent, CN104557995B, 2013.

    36. [36]

      X. Zhou, Chinese Patent, CN105481887A, 2015.

    37. [37]

      J.L. Allen, S.D. Han, P.D. Boyle, W.A. Henderson, J. Power Sources 196 (2011) 9737–9742.

    38. [38]

      K. Xu, S. Zhang, T.R. Jow, et al., Electrochem. Solid-State Lett. 5 (2002) A26–A29.

    39. [39]

      K. Xu, U. Lee, S. Zhang, et al., Electrochem. Solid-State Lett. 7 (2004) A273–A277.

    40. [40]

      K. Xu, S.S. Zhang, U. Lee, et al., J. Power Sources 146 (2005) 79–85.

    41. [41]

      S. Zhang, J. Power Sources 163 (2007) 713–718.

    42. [42]

      S.H. Kang, D.P. Abraham, A. Xiao, B.L. Lucht, J. Power Sources 175 (2008) 526–532.

    43. [43]

      Z. Zhang, X. Chen, F. Li, et al., J. Power Sources 195 (2010) 7397–7402.

    44. [44]

      K. Xu, S. Zhang, T.R. Jow, Electrochem. Solid-State Lett. 6 (2003) A117–A120.

    45. [45]

      J. Yu, N. Gao, J. Peng, et al., Front. Chem. 7 (2019) 494.

    46. [46]

      E. Zinigrad, L. Larush-Asraf, G. Salitra, et al., Thermochim. Acta 457 (2007) 64–69.

    47. [47]

      R. Holomb, W. Xu, H. Markusson, et al., J. Phys. Chem. A 110 (2006) 11467–11472.  doi: 10.1021/jp0626824

    48. [48]

      S.-D. Han, O. Borodin, J.L. Allen, et al., J. Electrochem. Soc. 160 (2013) A2100–A2110.  doi: 10.1149/2.094309jes

    49. [49]

      J. Li, P. Meng, H. Zhou, Ionics 24 (2018) 2147–2155.  doi: 10.1007/s11581-018-2463-0

    50. [50]

      S.S. Zhang, K. Xu, T.R. Jow, J. Electrochem. Soc. 149 (2002) A586–A590.

    51. [51]

      H. Liu, J. Zhang, L. Zhang, et al., J. Phys. Chem. C 128 (2024) 1574–1581.  doi: 10.1021/acs.jpcc.3c06738

    52. [52]

      J.L. Allen, D.W. McOwen, S.A. Delp, et al., J. Power Sources 237 (2013) 104–111.

    53. [53]

      G. Yan, X. Li, Z. Wang, et al., J. Solid State Electrochem. 20 (2015) 507–516.

    54. [54]

      K. Park, S. Yu, C. Lee, H. Lee, J. Power Sources 296 (2015) 197–203.

    55. [55]

      R. He, K. Deng, T. Guan, et al., J. Colloid Inter. Sci. 644 (2023) 230–237.

    56. [56]

      S. Zugmann, M. Fleischmann, M. Amereller, et al., J. Chem. Eng. Data 56 (2011) 4786–4789.  doi: 10.1021/je2007814

    57. [57]

      F. Wen, S. Cao, X. Ren, et al., ACS Appl. Energy Mater. 5 (2022) 15491–15501.  doi: 10.1021/acsaem.2c03065

    58. [58]

      Q. Han, S. Wang, W. Kong, et al., Chem. Eng. J. 454 (2023) 140104.

    59. [59]

      V. Aravindan, P. Vickraman, K. Krishnaraj, Polymer Inter. 57 (2008) 932–938.  doi: 10.1002/pi.2430

    60. [60]

      K. Karuppasamy, H.S. Kim, D. Kim, et al., Sci. Rep. 7 (2017) 11103.

    61. [61]

      A.R. Polu, D.K. Kim, H.W. Rhee, Ionics 21 (2015) 2771–2780.  doi: 10.1007/s11581-015-1474-3

    62. [62]

      A. Swiderska-Mocek, A. Kubis, Solid State Ionics 364 (2021) 115628.

    63. [63]

      X. Yu, M. Li, J. Ma, et al., ACS Sus. Chem. Eng. 11 (2023) 12378–12388.  doi: 10.1021/acssuschemeng.3c02727

    64. [64]

      M. Li, H. An, Y. Song, et al., J. Am. Chem. Soc. 145 (2023) 25632–25642.  doi: 10.1021/jacs.3c07482

    65. [65]

      M. Nie, B.L. Lucht, J. Electrochem. Soc. 161 (2014) A1001–A1006.  doi: 10.1149/2.054406jes

    66. [66]

      I.A. Shkrob, Y. Zhu, T.W. Marin, D.P. Abraham, J. Phys. Chem. C 117 (2013) 23750–23756.  doi: 10.1021/jp407714p

    67. [67]

      S. Zhang, ECS Trans. 3 (2007) 59–68.  doi: 10.1149/1.2793579

    68. [68]

      Y. Zhu, Y. Li, M. Bettge, D.P. Abraham, Electrochim. Acta 110 (2013) 191–199.

    69. [69]

      Y. Zhao, Z. Hu, Z. Zhao, et al., J. Am. Chem. Soc. 145 (2023) 22184–22193.  doi: 10.1021/jacs.3c08313

    70. [70]

      M. Xu, L. Zhou, L. Hao, et al., J. Power Sources 196 (2011) 6794–6801.

    71. [71]

      S.A. Delp, J.L. Allen, T.R. Jow, ECS Trans. 58 (2014) 111–118.  doi: 10.1149/05848.0111ecst

    72. [72]

      Z. Chen, Y. Qin, J. Liu, K. Amine, Electrochem. Solid-State Lett. 12 (2009) A69–A72.  doi: 10.1149/1.3070581

    73. [73]

      Q. Zhao, Y. Zhang, F. Tang, et al., J. Electrochem. Soc. 164 (2017) A1873–A1880.  doi: 10.1149/2.0851709jes

    74. [74]

      L. Chen, J. Shu, Y. Huang, et al., Appl. Surf. Sci. 598 (2022) 153740.

    75. [75]

      F. Xu, X. Cai, J. Zhang, et al., ACS Appl. Energy Mater. 5 (2022) 11370–11378.  doi: 10.1021/acsaem.2c01862

    76. [76]

      M.D. Bhatt, C. O'Dwyer, Chem. Phys. Lett. 618 (2015) 208–213.

    77. [77]

      R. Petibon, J. Harlow, D.B. Le, J.R. Dahn, Electrochim. Acta 154 (2015) 227–234.

    78. [78]

      L. Ma, S.L. Glazier, R. Petibon, et al., J. Electrochem. Soc. 164 (2016) A5008–A5018.

    79. [79]

      E.R. Logan, E.M. Tonita, K.L. Gering, et al., J. Electrochem. Soc. 165 (2018) A21–A30.  doi: 10.1149/2.0271802jes

    80. [80]

      Q. Liu, Z. Zeng, M. Qin, et al., Batt. Super. 7 (2024) e202400034.

    81. [81]

      R. Xiang, F.Q. Li, G.F. Jia, et al., Adv. Mater. Res. 724-725 (2013) 1025–1028.

    82. [82]

      T. Schedlbauer, U.C. Rodehorst, C. Schreiner, et al., Electrochim. Acta 107 (2013) 26–32.

    83. [83]

      T. Schedlbauer, S. Krüger, R. Schmitz, et al., Electrochim. Acta 92 (2013) 102–107.

    84. [84]

      L. Li, P. Ji, M. Huang, et al., Chin. Chem. Lett. 35 (2024) 109144.

    85. [85]

      L. Yu, S. Chen, H. Lee, et al., ACS Energy Lett. 3 (2018) 2059–2067.  doi: 10.1021/acsenergylett.8b00935

    86. [86]

      H. Park, H. Kang, H. Kim, et al., ACS Appl. Mater. Inter. 15 (2023) 45876–45885.  doi: 10.1021/acsami.3c08876

    87. [87]

      Q. Ran, J. Liu, L. Li, et al., Chem. Eng. J. 465 (2023) 142937.

    88. [88]

      C. Fu, Y. Ma, S. Lou, et al., J. Mater. Chem. A 8 (2020) 2066–2073.  doi: 10.1039/c9ta11341j

    89. [89]

      X. Liu, C. Shen, N. Gao, et al., Electrochim. Acta 289 (2018) 422–427.

    90. [90]

      S. Das, J. Electro. Chem. 879 (2020) 114794.

    91. [91]

      M. Jia, C. Zhang, Y. Guo, et al., Energy Environ. Mater. 5 (2022) 1294–1302.  doi: 10.1002/eem2.12246

    92. [92]

      F. Guo, X. Chen, Y. Hou, et al., Small 19 (2023) e2207290.

    93. [93]

      Z.h. Chang, X. Li, F.l. Yun, et al., ChemElectroChem 7 (2020) 1135–1141.  doi: 10.1002/celc.201901906

    94. [94]

      L. Rynearson, N.D. Rodrigo, C. Jayawardana, B.L. Lucht, J. Electrochem. Soc. 169 (2022) 040537.  doi: 10.1149/1945-7111/ac6455

    95. [95]

      L. Rynearson, C. Jayawardana, M. Yeddala, B.L. Lucht, J. Electrochem. Soc. 170 (2023) 060525.  doi: 10.1149/1945-7111/acdd26

    96. [96]

      L. Rynearson, C. Jayawardana, N.D. Rodrigo, B.L. Lucht, J. Phys. Chem. C 127 (2023) 1758–1766.  doi: 10.1021/acs.jpcc.2c08055

    97. [97]

      L. Haneke, F. Pfeiffer, P. Barmann, et al., Small 19 (2023) e2206092.

    98. [98]

      G. Yan, K. Reeves, D. Foix, et al., Adv. Energy Mater. 9 (2019) 1901431.

    99. [99]

      C. Cometto, G. Yan, S. Mariyappan, J.M. Tarascon, J. Electrochem. Soc. 166 (2019) A3723–A3730.  doi: 10.1149/2.0721915jes

    100. [100]

      Q. Zhang, Z. Wang, X. Li, et al., Ionics 27 (2020) 683–691.  doi: 10.1007/s11223-020-00218-2

    101. [101]

      Z. Wang, H. Zhu, H. Yu, et al., Chin. Chem. Lett. 34 (2023) 107718.

    102. [102]

      X. Zhu, Y. Mo, J. Chen, et al., Chin. Chem. Lett. 35 (2024) 109146.

    103. [103]

      Z. Wang, J. Liu, C. Li, et al., Inter. J. Electrochem. Sci. 11 (2016) 6149–6163.  doi: 10.20964/2016.07.53

    104. [104]

      L. Zhang, Y. Sun, Y. Zhou, et al., Ionics 24 (2018) 2995–3004.  doi: 10.1007/s11581-018-2470-1

    105. [105]

      H. Zhou, Z. Yang, D. Xiao, et al., J. Mater. Sci. Mater. Electron. 29 (2018) 6648–6659.  doi: 10.1007/s10854-018-8650-y

    106. [106]

      S. Wen, Y. Han, P. Wang, et al., ACS Appl. Energy Mater. 4 (2021) 12525–12534.  doi: 10.1021/acsaem.1c02331

    107. [107]

      X. Wu, Z. Wang, X. Li, et al., J. Power Sources 204 (2012) 133–138.

    108. [108]

      Y.K. Kwon, W. Choi, H.S. Choi, J.K. Lee, Electron. Mater. Lett. 9 (2013) 751–754.  doi: 10.1007/s13391-013-6001-y

    109. [109]

      M.H. Fu, K.L. Huang, S.Q. Liu, et al., J. Power Sources 195 (2010) 862–866.

    110. [110]

      X.P. Li, X.L. Cui, M.Y. Wang, X.X. Wang, Adv. Mater. Res. 842 (2013) 3–6.

    111. [111]

      H. Zhou, K. Xiao, J. Li, J. Power Sources 302 (2016) 274–282.

    112. [112]

      F. Li, X. Shangguan, G. Jia, et al., J. Solid State Electrochem. 20 (2016) 3491–3498.  doi: 10.1007/s10008-016-3313-5

    113. [113]

      H. Zhou, D. Xiao, C. Yin, et al., J. Electro. Chem. 808 (2018) 293–302.

    114. [114]

      B. Liu, H. Zhou, C. Yin, et al., Electrochim. Acta 321 (2019) 134690.

    115. [115]

      A. Borchers, T. Pieler, Genes 1 (2010) 413–426.  doi: 10.3390/genes1030413

    116. [116]

      I. Bloom, L. Trahey, A. Abouimrane, et al., J. Power Sources 249 (2014) 509–514.

    117. [117]

      B. Jiang, H. Li, B. Luo, et al., Chin. Chem. Lett. 35 (2024) 108649.

    118. [118]

      N. Yabuuchi, K. Yoshii, S.T. Myung, et al., J. Am. Chem. Soc. 133 (2011) 4404–4419.  doi: 10.1021/ja108588y

    119. [119]

      J. Hong, H. Gwon, S.K. Jung, et al., J. Electrochem. Soc. 162 (2015) A2447–A2467.  doi: 10.1149/2.0071514jes

    120. [120]

      M. Sathiya, A.M. Abakumov, D. Foix, et al., Nat. Mater. 14 (2014) 230–238.

    121. [121]

      J. Zheng, M. Gu, J. Xiao, et al., Nano Lett. 13 (2013) 3824–3830.  doi: 10.1021/nl401849t

    122. [122]

      B. Song, Z. Liu, M.O. Lai, L. Lu, Phys. Chem. Chem. Phys. 14 (2012) 12875.  doi: 10.1039/c2cp42068f

    123. [123]

      N.S. Choi, J.G. Han, S.Y. Ha, et al., RSC Adv. 5 (2015) 2732–2748.

    124. [124]

      R.P. Qing, J.L. Shi, D.D. Xiao, et al., Adv. Energy Mater. 6 (2016) 1501914.

    125. [125]

      B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80 (2012) 187–195.

    126. [126]

      L. Li, B.H. Song, Y.L. Chang, et al., J. Power Sources 283 (2015) 162–170.

    127. [127]

      G.R. Li, X. Feng, Y. Ding, et al., Electrochim. Acta 78 (2012) 308–315.

    128. [128]

      S.K. Martha, J. Nanda, Y. Kim, et al., J. Mater. Chem. A 1 (2013) 5587–5595.  doi: 10.1039/c3ta10586e

    129. [129]

      K.G. Gallagher, S.H. Kang, S.U. Park, S.Y. Han, J. Power Sources 196 (2011) 9702–9707.

    130. [130]

      H. Huang, G.B. Liu, J.H. Wu, H. Liu, Inter. J. Electrochem. Sci. 10 (2015) 5048–5060.

    131. [131]

      J.G. Han, S.J. Lee, J. Lee, et al., ACS Appl. Mater. Inter. 7 (2015) 8319–8329.  doi: 10.1021/acsami.5b01770

    132. [132]

      F. Wu, Q. Zhu, R. Chen, et al., Nano Energy 13 (2015) 546–553.

    133. [133]

      J. Cha, J.G. Han, J. Hwang, et al., J. Power Sources 357 (2017) 97–106.

    134. [134]

      X. Bian, S. Ge, Q. Pang, et al., J. Alloys Comp. 736 (2018) 136–142.

    135. [135]

      J.A. Seel, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 892–898.

    136. [136]

      H. Wang, M. Yoshio, Chem. Commun. 46 (2010) 1544–1546.  doi: 10.1039/b914931g

    137. [137]

      T. Placke, A. Heckmann, R. Schmuch, et al., Joule 2 (2018) 1–23.

    138. [138]

      B. Li, B. Cao, X. Zhou, et al., Chin. Chem. Lett. 34 (2023) 107832.

    139. [139]

      H. Fan, L. Qi, M. Yoshio, H. Wang, Solid State Ionics 304 (2017) 107–112.

    140. [140]

      Y. Huang, L. Qi, H. Wang, Electrochim. Acta 258 (2017) 380–387.

    141. [141]

      L. Zhang, D. Zhu, H. Wang, J. Electrochem. Soc. 166 (2019) A2654–A2659.  doi: 10.1149/2.1461912jes

    142. [142]

      L. Zhang, H. Wang, J. Energy Chem. 58 (2021) 233–236.

    143. [143]

      J. Zhang, C. Chen, D. Zhu, et al., Langmuir 38 (2022) 3824–3831.  doi: 10.1021/acs.langmuir.1c03485

    144. [144]

      Y. Wang, S. Ma, H. Wang, ChemSusChem 16 (2023) e202201218.

    145. [145]

      Y. Wang, Y. Zhang, S. Wang, et al., Adv. Funct. Mater. 31 (2021) 2102360.

    146. [146]

      H. Zhou, Z. Fang, J. Li, J. Power Sources 230 (2013) 148–154.

    147. [147]

      S. Sreedeep, S. Natarajan, Y.S. Lee, V. Aravindan, Energy Tech. 11 (2022) 2200988.

    148. [148]

      B. Zhu, X. Shi, T. Zheng, et al., Electrochim. Acta 425 (2022) 140698.

    149. [149]

      B. Li, Y. Shao, J. He, et al., Electrochim. Acta 426 (2022) 140783.

    150. [150]

      M. Zhao, G. Xu, D. Lu, et al., J. Electrochem. Soc. 168 (2021) 050511.  doi: 10.1149/1945-7111/abfb39

    151. [151]

      C.C. Su, M. He, M. Cai, et al., Nano Energy 92 (2022) 106720.

    152. [152]

      T. Deng, X. Fan, L. Cao, et al., Joule 3 (2019) 2550–2564.

    153. [153]

      J. Xia, M. Nie, J.C. Burns, et al., J. Power Sources 307 (2016) 340–350.

    154. [154]

      T. Yang, S. Li, W. Wang, et al., J. Power Sources 505 (2021) 230055.

    155. [155]

      X. Zheng, Z. Gu, X. Liu, et al., Energy Environ. Sci. 13 (2020) 1788–1798.  doi: 10.1039/d0ee00694g

    156. [156]

      O. Lavi, S. Luski, N. Shpigel, et al., ACS Appl. Energy Mater. 3 (2020) 7485–7499.  doi: 10.1021/acsaem.0c00898

  • 加载中
    1. [1]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    2. [2]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    3. [3]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    4. [4]

      Tong PengYupeng XingLan MuChenggang WangNing ZhaoWenbo LiaoJianlei LiGang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039

    5. [5]

      Xiaoyu DuHuan Wang . Tailoring mass transfer on electrochemical fixation of air-abundant molecules. Chinese Chemical Letters, 2025, 36(8): 110276-. doi: 10.1016/j.cclet.2024.110276

    6. [6]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    7. [7]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    8. [8]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    9. [9]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    10. [10]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    11. [11]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

    12. [12]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    15. [15]

      Zhangran YeZhixuan YuJingming YaoLei DengYunna GuoHantao CuiChongchong MaChao TaiLiqiang ZhangLingyun ZhuPeng Jia . An ionically conductive and compressible sulfochloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Chinese Chemical Letters, 2025, 36(8): 110272-. doi: 10.1016/j.cclet.2024.110272

    16. [16]

      Ziling JiangChen LiuJie YangXia LiChaochao WeiQiyue LuoZhongkai WuLin LiLiping LiShijie ChengChuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741

    17. [17]

      Jie ChenHannan ChenBingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775

    18. [18]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    19. [19]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    20. [20]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return