Citation: Huifang Ma, Tao Xu, Saifei Yuan, Shujuan Li, Jiayao Wang, Yuping Zhang, Hao Ren, Shulai Lei. Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces[J]. Chinese Chemical Letters, ;2025, 36(8): 110219. doi: 10.1016/j.cclet.2024.110219 shu

Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces

Figures(4)

  • Surface adsorption plays a crucial role in various natural and industrial processes, particularly in the field of energy storage. The adsorption of sodium atoms on 2D layered materials can significantly impact their performance as carriers and electrodes in ion batteries. While it is commonly acknowledged that pristine graphene is not favorable for sodium ion adsorption, the suitability of other 2D materials with similar honeycomb symmetry remains unclear. In this study, we employ systematic first-principles calculations to explore interlayer interactions and electron transfer effects on sodium adsorption on 2D van der Waals (vdW) heterostructures (HTSs) surfaces. Our results demonstrate that sodium adsorption is energetically favorable on these substrates. Moreover, we find that the adsorption strength can be effectively tuned by manipulation of the electron accumulation or depletion of the layer directly interacting with the sodium atom. By stacking these layered materials with different electron abundancy to form vdW HTSs, the charge density of the substrate becomes tunable through interlayer charge transfer. In these vdW HTSs, the adsorption behavior of sodium is primarily controlled by the absorption layer and exhibits a linear correlation with its pz-band center. Additionally, we identify linear correlations between the sodium adsorption energies, the electron loss of the sodium atom, the interlayer charge transfer, and the heights of the adsorbed sodium atom. These discoveries underscore the impact of interlayer electron transfer and interactions on sodium ion adsorption on 2D vdW HTSs and providing new insights into material design for alkali atom adsorption.
  • 加载中
    1. [1]

      J. Xiao, J. Han, C. Zhang, et al., Adv. Energy Mater. 12 (2022) 2100775.

    2. [2]

      J. Zhou, S. Guo, SmartMat 2 (2021) 176–201.  doi: 10.1002/smm2.1042

    3. [3]

      H.S. Hirsh, Y. Li, D.H.S. Tan, et al., Adv. Energy Mater. 10 (2020) 2001274.

    4. [4]

      L. Lin, J. Chen, D. Liu, et al., Adv. Energy Mater. 10 (2020) 2002621. .

    5. [5]

      X. Yang, R. Zhang, S. Xu, et al., Chem. Eur. J. 26 (2020) 5818–5823.  doi: 10.1002/chem.201905311

    6. [6]

      S. Sarkar, S. Roy, Y. Hou, et al., ChemSusChem 14 (2021) 3693–3723.  doi: 10.1002/cssc.202101270

    7. [7]

      H. Qi, C. Zhao, J. Huang, et al., Nanoscale 14 (2022) 780–789.  doi: 10.1039/d1nr06705b

    8. [8]

      Q. Liu, R. Xu, D. Mu, et al., Carbon Energy 4 (2022) 458–479.  doi: 10.1002/cey2.120

    9. [9]

      X. Li, J. Li, L. Ma, et al., Energy Environ. Mater. 5 (2022) 458–469.

    10. [10]

      X. Gong, Y. Zheng, J. Zheng, et al., ChemElectroChem 7 (2020) 1465–1472.  doi: 10.1002/celc.201902098

    11. [11]

      J. Yang, R.U.R. Sagar, T. Anwar, et al., Int. J. Energy Res. (2021), https://doi.org/10.1002/er.7514.  doi: 10.1002/er.7514

    12. [12]

      M.J. Lee, K. Lee, J. Lim, et al., Adv. Funct. Mater. 31 (2021) 2009397.

    13. [13]

      D. Wang, H. Hu, Y. Liao, et al., Sci. China Mater. 64 (2021) 318–328.

    14. [14]

      D. Kong, H. Fan, X. Ding, et al., ACS Appl. Mater. Interfaces 12 (2020) 46065–46072.  doi: 10.1021/acsami.0c12389

    15. [15]

      J. Zhang, J. Han, Q. Yun, et al., Small Sci. 1 (2021) 2000063.

    16. [16]

      C. Xia, W. Xiong, W. Xiao, et al., Phys. Rev. Appl. 10 (2018) 24028.

    17. [17]

      Y. Ren, F. Cheng, X. Zhou, K. Chang, G. Zhou, Carbon 143 (2019) 14–20.

    18. [18]

      Y. Qie, J. Liu, S. Wang, S. Gong, Q. Sun, Carbon N Y 129 (2018) 38–44.

    19. [19]

      K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353 (2016) aac9439.

    20. [20]

      A. Gao, J. Lai, Y. Wang, et al., Nat. Nanotechnol. 14 (2019) 217–222.  doi: 10.1038/s41565-018-0348-z

    21. [21]

      K. Bushick, S. Chae, Z. Deng, J.T. Heron, E. Kioupakis, npj Comput. Mater. 6 (2020) 3.

    22. [22]

      X. Yu, G. Zhao, C. Liu, et al., Adv. Funct. Mater. 31 (2021) 2103214.

    23. [23]

      S. Gao, Z. Wang, H. Wang, et al., Adv. Mater. Interf. 8 (2021) 2001730.

    24. [24]

      D.X. Song, Y.Z. Du, W.G. Ma, X. Zhang, Int. J. Energy Res. 45 (2021) 3421–3429.  doi: 10.1002/er.6027

    25. [25]

      J. Yu, M. Zhou, M. Yang, et al., Adv. Mater. Interf. 9 (2022) 2102088.

    26. [26]

      X. Wang, Y. Li, S. Wang, et al., Adv. Energy Mater. 10 (2020) 2000081.

    27. [27]

      F. Zou, T. Xu, Z. Wu, et al., J. Phys. Chem. C 124 (2020) 28074–28082.  doi: 10.1021/acs.jpcc.0c08143

    28. [28]

      G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558–561.

    29. [29]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15–50.

    30. [30]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

    31. [31]

      P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.

    32. [32]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.

    33. [33]

      S. Ehrlich, J. Moellmann, S. Grimme, Acc. Chem. Res. 46 (2013) 916–926.  doi: 10.1021/ar3000844

    34. [34]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.

    35. [35]

      W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 21 (2009) 84204.

    36. [36]

      S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030–1035.  doi: 10.1002/jcc.24300

    37. [37]

      C. Zhang, Y. Jiao, T. He, S. Bottle, T. Frauenheim, A. Du, J. Phys. Chem. Lett. 9 (2018) 858–862.  doi: 10.1021/acs.jpclett.7b03449

    38. [38]

      H. Li, L. Xu, X. Huang, et al., Int. J. Hydrogen Energy 48 (2023) 2186–2199.

    39. [39]

      K.T. Chan, J.B. Neaton, M.L. Cohen, Phys. Rev. B 77 (2008) 235430.  doi: 10.1103/PhysRevB.77.235430

    40. [40]

      C. Ling, F. Mizuno, Phys. Chem. Chem. Phys. 16 (2014) 10419–10424.

    41. [41]

      O.I. Malyi, K. Sopiha, V.V. Kulish, et al., Appl. Surf. Sci. 333 (2015) 235–243.

    42. [42]

      P. Bhauriyal, A. Mahata, B. Pathak, J. Phys. Chem. C 122 (2018) 2481–2489.  doi: 10.1021/acs.jpcc.7b09433

    43. [43]

      Y. Mao, H. Duan, B. Xu, et al., Energy Environ. Sci. 5 (2012) 7950.  doi: 10.1039/c2ee21817h

    44. [44]

      S. Li, J. Hao, F. Li, et al., J. Phys. Chem. C 118 (2014) 27843–27849.  doi: 10.1021/jp5074768

    45. [45]

      A.H. Woomer, D.L. Druffel, J.D. Sundberg, J.T. Pawlik, S.C. Warren, J. Am. Chem. Soc. 141 (2019) 10300–10308.  doi: 10.1021/jacs.9b03155

    46. [46]

      J.H. Lee, A. Avsar, J. Jung, et al., Nano Lett. 15 (2015) 319–325.  doi: 10.1021/nl5036012

    47. [47]

      J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Nat. Acad. Sci. U. S. A. 108 (2011) 937–943.  doi: 10.1073/pnas.1006652108

    48. [48]

      J.K. Nørskov, Progr. Surf. Sci. 38 (1991) 103–144.

  • 加载中
    1. [1]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    7. [7]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    8. [8]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    9. [9]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    10. [10]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    13. [13]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    14. [14]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    19. [19]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    20. [20]

      Longjian LiPing ZhangYongchong YuReyila TuerhongXiaoping SuLijuan HanEnzhou LiuJizhou Jiang . Electron trap-induced charge accumulation and surface reaction kinetics synergistically enhance overall nitrogen photofixation. Chinese Chemical Letters, 2025, 36(8): 111118-. doi: 10.1016/j.cclet.2025.111118

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return