Citation: Zhihan Chang, Yuchen Zhang, Yuan Tian, Xiuli Wang. Achieving high-proportioned 1T-MoS2 within heterostructures derived from polymolybdate-based complex for boosting electrocatalytic hydrogen evolution and oxygen evolution[J]. Chinese Chemical Letters, ;2025, 36(8): 110197. doi: 10.1016/j.cclet.2024.110197 shu

Achieving high-proportioned 1T-MoS2 within heterostructures derived from polymolybdate-based complex for boosting electrocatalytic hydrogen evolution and oxygen evolution

    * Corresponding authors.
    E-mail address: wangxiuli@bhu.edu.cn (X. Wang).
    1 These authors contributed equally to this work.
  • Received Date: 3 May 2024
    Revised Date: 14 June 2024
    Accepted Date: 1 July 2024
    Available Online: 2 July 2024

Figures(11)

  • The fabrication of bifunctional electrocatalysts for hydrogen and oxygen evolution in aqueous environment has far-reaching significance. Especially, reasonable interface process regulation toward heterogeneous composites can make full use of the active sites and improve the electrocatalytic activity. In this study, we designed and synthesized NiS2-MoS2-based heterogeneous composites as efficient and stable electrocatalysts for hydrogen and oxygen evolution in alkaline electrolyte. The heterostructure was obtained by one-step hydrothermal ulfurization operation towards polymolybdate-based metal-organic complex. The composition and nanostructures can be tailored by modulating experiment parameter, realizing the phase-controlled synthesis and interface regulation: (1) High-percentage of 1T-MoS2 can be achieved via selecting appropriate vulcanization time and thiourea concentration, benifiting for the higher electroconductivity and more active sites; (2) Regular and orderly vulcanization time promotes the gradual growth and aggregation of nanosheets; (3) The existence of nickel hydroxide improves the electrocatalytic stability for oxygen production performance. The optimized heterogeneous interfaces provide sufficient active sites and accelerate electron transfer. Consequently, the optimal heterogeneous nanosheets present low overpotentials of 33 and 122 mV at the catalytic current densities of 10 mA/cm2 for HER and OER, respectively.
  • 加载中
    1. [1]

      S. Yu, D. Liu, C. Wang, et al., J. Colloid Interface Sci. 653 (2024) 1464–1477.

    2. [2]

      H. Shi, Y. Zhang, N. Pang, et al., Electrochem. Acta 439 (2023) 141596.

    3. [3]

      D. Merki, S. Fierro, H. Vrubel, X.L. Hu, Chem. Sci. 2 (2011) 1262–1267.

    4. [4]

      Y. Chen, G. Meng, T. Yang, et al., J. Chem. Eng. 450 (2022) 138157.

    5. [5]

      Y.X. Guo, L.F. Gan, C.S. Shang, E.K. Wang, J. Wang, Adv. Funct. Mater. 27 (2017) 1602699.

    6. [6]

      J. Timoshenko, B.R. Cuenya, Chem. Rev. 121 (2021) 882–961.  doi: 10.1021/acs.chemrev.0c00396

    7. [7]

      X.P. Han, G.W. He, Y. He, et al., Adv. Energy Mater. 8 (2018) 1702222.

    8. [8]

      J.T. Ren, L. Chen, D.D. Yang, Z.Y. Yuan, Appl. Catal. B: Environ. 263 (2020) 118352.

    9. [9]

      B. Tao, L. Yang, F. Miao, Y. Zang, P.K. Chu, J. Phys. Chem. Solids. 150 (2021) 109842.

    10. [10]

      B. Chen, P. Hu, F. Yang, et al., Small 19 (2023) 2207177.

    11. [11]

      H. Xu, J.J. Yi, X.J. She, et al., Appl. Catal. B: Environ. 220 (2018) 379.

    12. [12]

      M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10 (2015) 313–318.  doi: 10.1038/nnano.2015.40

    13. [13]

      Q. Li, Q. Shang, A. Khalil, et al., ChemCatChem 8 (2016) 2614–2619.  doi: 10.1007/s00167-015-3874-3

    14. [14]

      X.X. Han, X.L. Tong, X.C. Liu, et al., ACS Catal. 8 (2018) 1828–1836.  doi: 10.1021/acscatal.7b03316

    15. [15]

      C.J. Lei, Y. Wang, Y. Hou, et al., Energy Environ. Sci. 12 (2019) 149–156.  doi: 10.1039/c8ee01841c

    16. [16]

      P.Z. Li, N. Chen, A.A. Hamry, et al., Chem. Eng, J. 457 (2023) 141289.

    17. [17]

      B. Gao, Y.W. Zhao, X.Y. Du, et al., Adv. Funct. Mater. 33 (2023) 2214085.

    18. [18]

      H. Miras, L. Vila-Nadal, L. Cronin, Chem. Soc. Rev. 43 (2014) 5679–5699.

    19. [19]

      Y.J. Tang, A.M. Zhang, H.J. Zhu, et al., Nanoscale 10 (2018) 8404–8412.  doi: 10.1039/c8nr00925b

    20. [20]

      Y.T. Song, Y.W. Peng, S. Yao, et al., Chin. Chem. Lett. 33 (2022) 1047–1050.

    21. [21]

      H.Q. Yin, L.L. Yang, H. Sun, et al., Chin. Chem. Lett. 34 (2023) 1047–1050.

    22. [22]

      L. Yang, Z. Zhang, C.N. Zhang, X.L. Wang, Rare Met. 43 (2024) 236–246.  doi: 10.1007/s12598-023-02435-5

    23. [23]

      H.J. Lv, Y.V. Geletii, C.C. Zhao, et al., Chem. Soc. Rev. 41 (2012) 7572–7589.  doi: 10.1039/c2cs35292c

    24. [24]

      Y. Hou, H.J. Pang, L. Zhang, et al., J. Power Sources 446 (2020) 227319.

    25. [25]

      L.H. He, B.B. Cui, B. Hu, et al., ACS Appl. Energy Mater. 1 (2018) 3915–3928.  doi: 10.1021/acsaem.8b00663

    26. [26]

      X. Zhang, F.F. Jia, S.X. Song, Chem. Eng. J. 405 (2021)127013.

    27. [27]

      T.F. Jaramillo, K.P. Jorgensen, J. Bonde, et al., Science 317 (2007) 100–102.  doi: 10.1126/science.1141483

    28. [28]

      K.T. Le, N.N.T. Pham, Y.S. Liao, et al., J. Mater. Chem. A 11 (2023) 3481–3492.  doi: 10.1039/d2ta08461a

    29. [29]

      Z.Y. Zhang, Y.T. Dong, C. Carlos, X.D. Wang, ACS Nano 17 (2023) 17180–17189.  doi: 10.1021/acsnano.3c05014

    30. [30]

      X.M. Geng, W.W. Sun, W. Wu, et al., Nat. Commun. 7 (2016) 10672.

    31. [31]

      M.Q. Liu, J.A. Wang, W. Klysubun, et al., Nat. Commun. 2 (2021) 5260.

    32. [32]

      S.J. Deng, Y. Zhong, Y.X. Zeng, et al., Adv. Mater. 29 (2017) 1700748.

    33. [33]

      Y.F. Yu, G.H. Nam, Q.Y. He, et al., Nat. Chem. 10 (2018) 638–643.  doi: 10.1038/s41557-018-0035-6

    34. [34]

      G. Eda, H. Yamaguchi, D. Voiry, et al., Nano Lett. 11 (2011) 5111–5116.  doi: 10.1021/nl201874w

    35. [35]

      L.Y. Zeng, Z. Liu, K.A. Sun, et al., J. Mater. Chem. A 7 (2019) 25628–25640.  doi: 10.1039/c9ta08030a

    36. [36]

      C.Y. Li, M.D. Liu, H.Y. Ding, et al., J. Mater. Chem. A 8 (2020) 17527–17536.  doi: 10.1039/d0ta04586a

    37. [37]

      C. Karakaya, N. Solati, U. Savacı, et al., ACS Catal. 10 (2020) 15114–15122.  doi: 10.1021/acscatal.0c03094

    38. [38]

      X. Wang, H. Li, H. Li, et al., Adv. Funct. Mater. 30 (2020) 0190302.

    39. [39]

      M.A.R. Anjum, H.Y. Jeong, M.H. Lee, H.S. Shin, J.S. Lee, Adv. Mater. 30 (2018) 1707105.

    40. [40]

      Q. Liu, X.L. Li, Q. He, et al., Small 11 (2015) 5556–5564.  doi: 10.1002/smll.201501822

    41. [41]

      J. Peng, Y.H. Liu, X. Luo, et al., Adv. Mater. 31 (2019) 1900568.

    42. [42]

      J.J. Zhang, C.H. Zhang, Z.Y. Wang, et al., Small 14 (2018) 1703098.

    43. [43]

      T. Niyitanga, H. Kim, J. Power Sources 580 (2023) 233383.

    44. [44]

      C. McCrory, S. Jung, I.M. Ferrer, et al., J. Am. Chem. Soc. 137 (2015) 4347–4357.  doi: 10.1021/ja510442p

    45. [45]

      Z.C. Xing, D.W. Wang, T. Meng, X.R. Yang, ACS Appl. Mater. Interfaces 12 (2020) 39163–39169.  doi: 10.1021/acsami.0c10476

    46. [46]

      Y. Li, D.M. Patel, C.S. Tsang, et al., Adv. Mater. Interfaces 8 (2021) 2001665.

    47. [47]

      A. Eftekhari, Int. J. Hydrog. Energy 42 (2017) 11053–11077.

    48. [48]

      J.Q. Yan, H. Wu, P. Li, et al., J. Mater. Chem. A 5 (2017) 10173–10181.

    49. [49]

      X. Xu, F. Song, X.L. Hu, Nat. Commun. 7 (2016) 12324.

    50. [50]

      H. Zhu, J.F. Zhang, Y. Zhang, et al., Adv. Mater. 27 (2015) 4752–4759.  doi: 10.1002/adma.201501969

    51. [51]

      J. Zhang, T. Wang, D. Pohl, et al., Angew. Chem. Int. Ed. 128 (2016) 6814–6819.  doi: 10.1002/ange.201602237

    52. [52]

      S.S. Chou, N. Sai, P. Lu, et al., Nat. Commun. 6 (2015) 8311.

    53. [53]

      Q. Tang, D.E. Jiang, ACS Catal. 6 (2016) 4953–4961.  doi: 10.1021/acscatal.6b01211

  • 加载中
    1. [1]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    2. [2]

      Tengteng WangYiming JuYao ChengHaiyang WangDejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871

    3. [3]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    4. [4]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    5. [5]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    6. [6]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    7. [7]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    10. [10]

      Li LiLin-Lin ZhangYansha GaoLu-Ying DuanWuying YangXigen HuangYanping HongJiaxin HongLin YuanLimin Lu . Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin. Chinese Chemical Letters, 2025, 36(7): 110436-. doi: 10.1016/j.cclet.2024.110436

    11. [11]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    12. [12]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    13. [13]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    14. [14]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    15. [15]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    18. [18]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    19. [19]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    20. [20]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return