Citation: Yujie Wang, Haoran Wang, Yanni Liu, Manhua Peng, Hongwei Fan, Hong Meng. A comprehensive review on the scalable and sustainable synthesis of covalent organic frameworks[J]. Chinese Chemical Letters, ;2025, 36(8): 110189. doi: 10.1016/j.cclet.2024.110189 shu

A comprehensive review on the scalable and sustainable synthesis of covalent organic frameworks

Figures(21)

  • Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials have attracted widespread interest due to their designable structures and customized functions. However, the solvothermal synthesis of COFs is often time-consuming and conducted at a high temperature within a sealed vessel, and also requires a large amount of poisonous solvents, which is generally not available for scaling-up production and commercial application. In recent years, great efforts have been made to explore simple, green, and efficient approaches for COFs synthesis. In this comprehensive review, we summarized the advances in emergent strategies by highlighting their distinct features. Fundamental issues and future directions are also discussed with the object of bringing implications for large-scale and sustainable fabrication of COFs.
  • 加载中
    1. [1]

      A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.  doi: 10.1126/science.1120411

    2. [2]

      F. Haase, B.V. Lotsch, Chem. Soc. Rev. 49 (2020) 8469–8500.  doi: 10.1039/d0cs01027h

    3. [3]

      S. Yuan, X. Li, J. Zhu, et al., Chem. Soc. Rev. 48 (2019) 2665–2681.  doi: 10.1039/c8cs00919h

    4. [4]

      K. Xu, N. Huang, Chem. Res. Chin. U. 38 (2022) 339–349.  doi: 10.1007/s40242-022-1476-4

    5. [5]

      S. Liu, M. Wang, Y. He, et al., Coord. Chem. Rev. 475 (2023) 214882.

    6. [6]

      A. Knebel, J. Caro, Nat. Nanotechnol. 17 (2022) 911–923.  doi: 10.1038/s41565-022-01168-3

    7. [7]

      Q. Fang, J. Wang, S. Gu, et al., J. Am. Chem. Soc. 137 (2015) 8352–8355.  doi: 10.1021/jacs.5b04147

    8. [8]

      Y. Cao, M. Wang, H. Wang, et al., Adv. Energy Mater. 12 (2022) 2200057.

    9. [9]

      P. Martinez-Bulit, A. Sorrenti, D. Rodriguez San Miguel, et al., Chem. Eng. J. 435 (2022) 135117.

    10. [10]

      Y. Li, W. Chen, G. Xing, et al., Chem. Soc. Rev. 49 (2020) 2852–2868.  doi: 10.1039/d0cs00199f

    11. [11]

      Z. Mu, Y. Zhu, B. Li, et al., J. Am. Chem. Soc. 144 (2022) 5145–5154.  doi: 10.1021/jacs.2c00584

    12. [12]

      Q. Gao, X. Li, G.H. Ning, et al., Chem. Mater. 30 (2018) 1762–1768.  doi: 10.1021/acs.chemmater.8b00117

    13. [13]

      J.Y. Song, X. Chen, Y.M. Wang, et al., Chem. Asian J. 18 (2023) e202300857.

    14. [14]

      X. Feng, L. Chen, Y. Dong, et al., Chem. Commun. 47 (2011) 1979–1981.  doi: 10.1039/c0cc04386a

    15. [15]

      H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, et al., Science 316 (2007) 268–272.  doi: 10.1126/science.1139915

    16. [16]

      S.Y. Ding, J. Gao, Q. Wang, et al., J. Am. Chem. Soc. 133 (2011) 19816–19822.  doi: 10.1021/ja206846p

    17. [17]

      H.S. Xu, Y. Luo, X. Li, et al., Nat. Commun. 11 (2020) 1434.

    18. [18]

      H. Lyu, H. Li, N. Hanikel, et al., J. Am. Chem. Soc. 144 (2022) 12989–12995.  doi: 10.1021/jacs.2c05382

    19. [19]

      S. Kandambeth, A. Mallick, B. Lukose, et al., J. Am. Chem. Soc. 134 (2012) 19524–19527.  doi: 10.1021/ja308278w

    20. [20]

      F.J. Uribe-Romo, C.J. Doonan, H. Furukawa, et al., J. Am. Chem. Soc. 133 (2011) 11478–11481.  doi: 10.1021/ja204728y

    21. [21]

      Q.R. Fang, Z.B. Zhuang, S. Gu, et al., Nat. Commun. 5 (2014) 4503.

    22. [22]

      X. Ding, L. Chen, Y. Honsho, et al., J. Am. Chem. Soc. 133 (2011) 14510–14513.  doi: 10.1021/ja2052396

    23. [23]

      G. Lin, H. Ding, R. Chen, et al., J. Am. Chem. Soc. 139 (2017) 8705–8709.  doi: 10.1021/jacs.7b04141

    24. [24]

      J. Thote, H. Barike Aiyappa, R. Rahul Kumar, et al., IUCrJ 3 (2016) 402–407.

    25. [25]

      F. Zhang, J. Zhang, B. Zhang, et al., ChemSusChem 11 (2018) 3576–3580.  doi: 10.1002/cssc.201801712

    26. [26]

      J. Á. Martín-Illán, D. Rodríguez-San-Miguel, C. Franco, et al., Chem. Commun. 56 (2020) 6704–6707.  doi: 10.1039/d0cc02033h

    27. [27]

      Z. Zhou, L. Zhang, Y. Yang, et al., Nat. Chem. 15 (2023) 841–847.  doi: 10.1038/s41557-023-01181-6

    28. [28]

      X. Kong, Z. Wu, M. Strømme, et al., J. Am. Chem. Soc. 146 (2024) 742–751.  doi: 10.1021/jacs.3c10691

    29. [29]

      L. Guo, Q.Y. Zhang, Z. Yu, et al., Chem. Mater. 35 (2023) 5648–5656.  doi: 10.1021/acs.chemmater.3c01220

    30. [30]

      M. Zhang, J.P. Liao, R.H. Li, et al., Nat. Sci. Rev. 10 (2023) nwad226.

    31. [31]

      X. Ma, W. Xu, X. Liang, et al., New J. Chem. 46 (2022) 4558–4561.  doi: 10.1039/d1nj06222k

    32. [32]

      X. Guan, Y. Ma, H. Li, et al., J. Am. Chem. Soc. 140 (2018) 4494–4498.  doi: 10.1021/jacs.8b01320

    33. [33]

      B. Dong, W.J. Wang, W. Pan, et al., Mater. Chem. Phys. 226 (2019) 244–249.

    34. [34]

      L. Zhao, H. Liu, Y. Du, et al., New J. Chem. 44 (2020) 15410–15414.  doi: 10.1039/d0nj01478h

    35. [35]

      Y. Gao, C. Wang, H. Hu, et al., Chem. Eur. J. 25 (2019) 15488–15492.  doi: 10.1002/chem.201904088

    36. [36]

      J. Qiu, H. Wang, Y. Zhao, et al., Green Chem. 22 (2020) 2605–2612.  doi: 10.1039/d0gc00223b

    37. [37]

      S. Wang, L. Li, S. Yu, et al., Chem. Eng. J. 406 (2021) 126722.

    38. [38]

      R. Gao, X. Kou, L. Tong, et al., Angew. Chem. Int. Ed. 63 (2024) e202319876.

    39. [39]

      J. Qiu, P. Guan, Y. Zhao, et al., Green Chem. 22 (2020) 7537–7542.  doi: 10.1039/d0gc02670k

    40. [40]

      M. Gao, D. Wang, L. Deng, et al., Chem. Mater. 33 (2021) 8036–8051.  doi: 10.1021/acs.chemmater.1c02344

    41. [41]

      Y.X. Chen, M. Zhang, S.Z. Zhang, et al., Green Chem. 24 (2022) 4071–4081.  doi: 10.1039/d2gc00754a

    42. [42]

      Y.X. Chen, S. Zhang, Y.J. Xue, et al., Appl. Organomet. Chem. 36 (2022) e6480.

    43. [43]

      X. Li, Y. Qi, G. Yue, et al., Green Chem. 21 (2019) 649–657.  doi: 10.1039/c8gc03295e

    44. [44]

      Z. Wang, Y. Yang, Z. Zhao, et al., Nat. Commun. 12 (2021) 1982.

    45. [45]

      X. Yang, Y. Jin, B. Yu, et al., Sci. China Chem. 65 (2022) 1291–1298.  doi: 10.1007/s11426-022-1269-0

    46. [46]

      Y. Jiang, H. Jung, S.H. Joo, et al., Angew. Chem. Int. Ed. 60 (2021) 17191–17197.  doi: 10.1002/anie.202106389

    47. [47]

      L. Xu, Y. Liu, Z. Ding, et al., Small 20 (2024) 2307843.

    48. [48]

      R.Q. Wang, X.B. Wei, Y.Q. Feng, Chem. Eur. J. 24 (2018) 10979–10983.  doi: 10.1002/chem.201802564

    49. [49]

      L. Zhang, R. Liang, C. Hang, et al., Green Chem. 22 (2020) 2498–2504.  doi: 10.1039/c9gc04033a

    50. [50]

      J. Xiao, J. Chen, H. Qiu, Green Chem. 24 (2022) 2193–2202.  doi: 10.1039/d1gc04741h

    51. [51]

      X. Chun-fang, H.A.N. Bing, J. Mater. Res. Technol. 8 (2019) 5984–5995.

    52. [52]

      N. Couzon, M. Ferreira, S. Duval, et al., ACS Appl. Mater. Interfaces 14 (2022) 21497–21508.  doi: 10.1021/acsami.2c03247

    53. [53]

      O. Długosz, M. Banach, Coll. Surf. A: Physicochem. Eng. Asp. 606 (2020) 125453.

    54. [54]

      Z. Lu, H. Zhao, J. Luo, et al., Energy Fuels 36 (2022) 8480–8487.  doi: 10.1021/acs.energyfuels.2c01613

    55. [55]

      S. Glowniak, B. Szczesniak, J. Choma, et al., Adv. Mater. 33 (2021) e2103477.

    56. [56]

      N.L. Campbell, R. Clowes, L.K. Ritchie, et al., Chem. Mater. 21 (2009) 204–206.  doi: 10.1021/cm802981m

    57. [57]

      G. Das, T. Skorjanc, S.K. Sharma, et al., J. Am. Chem. Soc. 139 (2017) 9558–9565.  doi: 10.1021/jacs.7b02836

    58. [58]

      Y. Ding, Y. Wang, Y. Su, et al., Chin. Chem. Lett. 31 (2020) 193–196.

    59. [59]

      C. Rodríguez-Carríllo, M. Benítez, J. El Haskouri, et al., Molecules 28 (2023) 3112.  doi: 10.3390/molecules28073112

    60. [60]

      B. Diaz de Grenu, J. Torres, J. Garcia-Gonzalez, et al., ChemSusChem 14 (2021) 208–233.  doi: 10.1002/cssc.202001865

    61. [61]

      J. Xie, S.A. Shevlin, Q. Ruan, et al., Energy Environ. Sci. 11 (2018) 1617–1624.  doi: 10.1039/c7ee02981k

    62. [62]

      W. Zhang, C. Li, Y.P. Yuan, et al., J. Mater. Chem. 20 (2010) 6413–6415.  doi: 10.1039/c0jm01392g

    63. [63]

      W. Zhang, L.G. Qiu, Y.P. Yuan, et al., J. Hazard. Mater. 221-222 (2012) 147–154.

    64. [64]

      W. Zhang, F. Liang, C. Li, et al., J. Hazard. Mater. 186 (2011) 984–990.

    65. [65]

      S. Ren, M.J. Bojdys, R. Dawson, et al., Adv. Mater. 24 (2012) 2357–2361.  doi: 10.1002/adma.201200751

    66. [66]

      M. Dogru, A. Sonnauer, S. Zimdars, et al., CrystEngComm 15 (2013) 1500–1502.  doi: 10.1039/c2ce26343b

    67. [67]

      W. Ji, Y.S. Guo, H.M. Xie, et al., J. Hazard. Mater. 397 (2020) 122793.

    68. [68]

      S.T. Yang, J. Kim, H.Y. Cho, et al., RSC Adv. 2 (2012) 10179–10181.  doi: 10.1039/c2ra21531d

    69. [69]

      J. Hu, Z. Huang, Y. Liu, Angew Chem. Int. Ed. 62 (2023) e202306999.

    70. [70]

      K. Duan, J. Wang, Y. Zhang, et al., J. Membr. Sci. 572 (2019) 588–595.

    71. [71]

      W. Zhao, P. Yan, H. Yang, et al., Nat. Synth. 1 (2022) 87–95.  doi: 10.1038/s44160-021-00005-0

    72. [72]

      I. Berlanga, M.L. Ruiz-Gonzalez, J.M. Gonzalez-Calbet, et al., Small 7 (2011) 1207–1211.  doi: 10.1002/smll.201002264

    73. [73]

      Y. Peng, Y. Huang, Y. Zhu, et al., J. Am. Chem. Soc. 139 (2017) 8698–8704.  doi: 10.1021/jacs.7b04096

    74. [74]

      R.K. Sharma, P. Yadav, M. Yadav, et al., Mater. Horiz. 7 (2020) 411–454.  doi: 10.1039/c9mh00856j

    75. [75]

      D. Yan, D.G. Evans, Mater. Horiz. 1 (2014) 46–57.

    76. [76]

      G. Fan, D. Yan, Sci. Rep. 4 (2014) 4933.

    77. [77]

      B.P. Biswal, S. Chandra, S. Kandambeth, et al., J. Am. Chem. Soc. 135 (2013) 5328–5331.  doi: 10.1021/ja4017842

    78. [78]

      G. Das, D.B. Shinde, S. Kandambeth, et al., Chem. Commun. 50 (2014) 12615–12618.

    79. [79]

      Y. Jiang, W. Huang, J. Wang, et al., J. Mater. Chem. A 2 (2014) 8201–8204.  doi: 10.1039/c4ta00555d

    80. [80]

      D.B. Shinde, H.B. Aiyappa, M. Bhadra, et al., J. Mater. Chem. A, 4 (2016) 2682–2690.

    81. [81]

      E. Troschke, S. Gratz, T. Lubken, et al., Angew Chem. Int. Ed. 56 (2017) 6859–6863.  doi: 10.1002/anie.201702303

    82. [82]

      P.F. Zhang, S. Dai, J. Mater. Chem. A 5 (2017) 16118–16127.

    83. [83]

      S. Chandra, S. Kandambeth, B.P. Biswal, et al., J. Am. Chem. Soc. 135 (2013) 17853–17861.  doi: 10.1021/ja408121p

    84. [84]

      D. Yan, A. Delori, G.O. Lloyd, et al., Angew Chem. Int. Ed. 50 (2011) 12483–12486.  doi: 10.1002/anie.201106391

    85. [85]

      B. Lu, S. Liu, D. Yan, Chin. Chem. Lett. 30 (2019) 1908–1922.

    86. [86]

      D. Yan, R. Gao, M. Wei, et al., J. Mater. Chem. C 1 (2013) 997–1004.

    87. [87]

      S. Hao, L. Jiang, Y. Li, et al., Chem. Commun. 56 (2020) 419–422.  doi: 10.1039/c9cc08331f

    88. [88]

      L. Garzon-Tovar, C. Avci-Camur, D. Rodriguez-San-Miguel, et al., Chem. Commun. 53 (2017) 11372–11375.

    89. [89]

      D. Yan, Chem. Eur. J. 21 (2015) 4880–4896.  doi: 10.1002/chem.201405456

    90. [90]

      A. Chen, H. Guo, J. Zhou, et al., ACS Appl. Nano Mater. 5 (2022) 3925–3936.  doi: 10.1021/acsanm.1c04521

    91. [91]

      J.H. Park, M.J. Kwak, C. Hwang, et al., Adv. Mater. 33 (2021) e2101726.

    92. [92]

      C. Song, Y. Shao, Z. Yue, et al., Anal. Chim. Acta 1176 (2021) 338772.

    93. [93]

      M.G. Barnes, D.C. McLeod, R.H. Lambeth, ACS Appl. Polym. Mater. 4 (2022) 2017–2021.  doi: 10.1021/acsapm.1c01828

    94. [94]

      X. Wang, X. Shi, Y. Wang, Langmuir 36 (2020) 10970–10978.  doi: 10.1021/acs.langmuir.0c01714

    95. [95]

      M.X. Zhang, J.C. Chen, S.T. Zhang, et al., J. Am. Chem. Soc. 142 (2020) 9169–9174.  doi: 10.1021/jacs.0c03941

    96. [96]

      S. Karak, S. Kandambeth, B.P. Biswal, et al., J. Am. Chem. Soc. 139 (2017) 1856–1862.  doi: 10.1021/jacs.6b08815

    97. [97]

      Z.B. Zhou, X.H. Han, Q.Y. Qi, et al., J. Am. Chem. Soc. 144 (2022) 1138–1143.  doi: 10.1021/jacs.1c12392

    98. [98]

      W. Zhao, J. Qiao, T.L. Ning, et al., Chin. J. Polym. Sci. 36 (2018) 1–7.

    99. [99]

      J. Han, J. Feng, J. Kang, et al., Science 383 (2024) 1014–1019.  doi: 10.1126/science.adk8680

    100. [100]

      T. Ma, E.A. Kapustin, S.X. Yin, et al., Science 361 (2018) 48–52.  doi: 10.1126/science.aat7679

    101. [101]

      N.A. Khan, R. Zhang, X. Wang, et al., Nat. Commun. 13 (2022) 3169.

    102. [102]

      D.D. Medina, J.M. Rotter, Y. Hu, et al., J. Am. Chem. Soc. 137 (2015) 1016–1019.  doi: 10.1021/ja510895m

    103. [103]

      S. Karak, K. Dey, A. Torris, et al., J. Am. Chem. Soc. 141 (2019) 7572–7581.  doi: 10.1021/jacs.9b02706

    104. [104]

      A.K. Mohammed, S. Usgaonkar, F. Kanheerampockil, et al., J. Am. Chem. Soc. 142 (2020) 8252–8261.  doi: 10.1021/jacs.0c00555

    105. [105]

      R. Liu, Q. Yan, Y. Tang, et al., J. Hazard. Mater. 421 (2022) 126702.

    106. [106]

      M. Matsumoto, R.R. Dasari, W. Ji, et al., J. Am. Chem. Soc. 139 (2017) 4999–5002.  doi: 10.1021/jacs.7b01240

    107. [107]

      D. Zhu, Z. Zhang, L.B. Alemany, et al., Chem. Mater. 33 (2021) 3394–3400.  doi: 10.1021/acs.chemmater.1c00737

    108. [108]

      J. He, X. Jiang, F. Xu, et al., Angew. Chem. Int. Ed. 60 (2021) 9984–9989.  doi: 10.1002/anie.202102051

    109. [109]

      C.J. Wu, X.Y. Li, T.R. Li, et al., J. Am. Chem. Soc. 144 (2022) 18750–18755.  doi: 10.1021/jacs.2c07893

    110. [110]

      A.D. Ruigomez, D. Rodriguez-San-Miguel, K.C. Stylianou, et al., Chem. Eur. J. 21 (2015) 10666–10670.

    111. [111]

      C. Franco, D. Rodriguez-San-Miguel, A. Sorrenti, et al., J. Am. Chem. Soc. 142 (2020) 3540–3547.  doi: 10.1021/jacs.9b12389

    112. [112]

      Y. Peng, W.K. Wong, Z. Hu, et al., Chem. Mater. 28 (2016) 5095–5101.  doi: 10.1021/acs.chemmater.6b01954

    113. [113]

      D. Rodriguez-San-Miguel, A. Abrishamkar, J.A. Navarro, et al., Chem. Commun. 52 (2016) 9212–9215.

  • 加载中
    1. [1]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    2. [2]

      Bo LiYuanzhe ChengXuyang MaDongxu ZhaoYang ZhangYongxing SunJia ChenLi WuLiang ZhaoHongdeng QiuYujian He . Facile and scale-up synthesis of cyano-functionalized covalent organic frameworks for selective gold recovery. Chinese Chemical Letters, 2026, 37(1): 111134-. doi: 10.1016/j.cclet.2025.111134

    3. [3]

      Liying OuZhenluan XueBo LiZhiwei JinJiaochan ZhongLixia YangPenghui ShaoShenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294

    4. [4]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    5. [5]

      Xia-Lin DaiYu-Hang YaoJian-Feng ZhenWei GaoJia-Mei ChenTong-Bu Lu . Reaction crystallization method based on deep eutectic solvents: A novel, green and efficient cocrystal synthesis approach. Chinese Chemical Letters, 2025, 36(11): 110413-. doi: 10.1016/j.cclet.2024.110413

    6. [6]

      Xinrui Chen Wenjian Huang Xiaoyang Zhao Songyao Zhang Xinrui Miao . Structural regulation of alkynyl-based covalent organic frameworks for multi-stimulus fluorescence sensing. Chinese Journal of Structural Chemistry, 2025, 44(7): 100604-100604. doi: 10.1016/j.cjsc.2025.100604

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    9. [9]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    10. [10]

      Qi LiMinqiao LiangHuifen ZhuangZhengyang ChenYuxiang JiangXiaofei ChenYifa ChenYa-Qian Lan . Underscoring the polyimide-linkage in covalent organic frameworks and related applications. Chinese Chemical Letters, 2026, 37(2): 111593-. doi: 10.1016/j.cclet.2025.111593

    11. [11]

      Lu ZhangBaohua WangWei YangLunan JuZihan FuLei ZhaoYunqi JiangHongyan WangXiansheng WangCong Lyu . CoOOH@COFs S−scheme heterojunction for efficient triclosan degradation in photocatalytic-peroxymonosulfate activation system: Enhanced interfacial electron transfer mechanism. Chinese Chemical Letters, 2026, 37(1): 111142-. doi: 10.1016/j.cclet.2025.111142

    12. [12]

      Qiang FangYingbo LuJianying HuangCheng ZhangJing WuShijun Li . An electrochemical immunosensor based on an antibody-ferrocene-functionalized covalent organic framework. Chinese Chemical Letters, 2026, 37(2): 111218-. doi: 10.1016/j.cclet.2025.111218

    13. [13]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    14. [14]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    15. [15]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    16. [16]

      Tong ZhaoKe WangFeiyu LiuShiyu ZhangShih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321

    17. [17]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    18. [18]

      Yuanlong Zhong Hancheng Shi Zhijie Chen . Rational synthesis of highly porous covalent organic frameworks for high-performance methane storage. Chinese Journal of Structural Chemistry, 2025, 44(5): 100514-100514. doi: 10.1016/j.cjsc.2025.100514

    19. [19]

      Sadia RaniNajoua SbeiSeyfeddine RahaliSamina AslamTomas HardwickNisar Ahmed . Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters, 2025, 36(11): 111216-. doi: 10.1016/j.cclet.2025.111216

    20. [20]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

Metrics
  • PDF Downloads(2)
  • Abstract views(801)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return