Citation: Qiangqiang Zhou, Lili Sun, Yu-Jie Guo, Bo Zhou, Chunfang Zhang, Sen Xin, Le Yu, Gaohong Zhai. First-principles study on the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides and blue phosphorus[J]. Chinese Chemical Letters, ;2025, 36(7): 110187. doi: 10.1016/j.cclet.2024.110187 shu

First-principles study on the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides and blue phosphorus

    * Corresponding authors.
    E-mail addresses: xinsen08@iccas.ac.cn (S. Xin), yule@nwu.edu.cn (L. Yu), zgh@nwu.edu.cn (G. Zhai).
    1 These authors contributed equally to this work
  • Received Date: 31 March 2024
    Revised Date: 1 June 2024
    Accepted Date: 27 June 2024
    Available Online: 27 June 2024

Figures(4)

  • Extensive first-principles calculations have been performed to examine the electrochemical properties of Na-ion-intercalatable heterostructures formed by transitional metal dichalcogenides (MS2, where M = Ti, V, Nb and Mo) and blue phosphorus (BlueP), which have been reported as potential anode materials for rechargeable sodium-ion batteries. Upon formation of heterostructures, much improved structural stabilities have observed compared with the pristine MS2 and BlueP. Metallic T-TiS2, T-MoS2, H(T)-VS2 and H(T)-NbS2 would retain the conductive character after formation of heterostructures with BlueP, however, H-TiS2/BlueP and H-MoS2/BlueP would undergo a semiconductor to metallic transition accompanied by Na intercalation. Moreover, the presence of relatively low diffusion barriers ranging from 0.04 eV to 0.08 eV, coupled with the suitable average open-circuit voltage spanning from 0.12 eV to 0.89 eV, guarantee exceptional charge-discharge rates and ensure the safety of battery performance. Among these heterostructures, H(T)-NbS2/BlueP and T-TiS2/BlueP exhibit best Na adsorption ability of up to 4 layers, corresponding to theoretical capacities of 570.2 and 746.7 mAh/g, respectively. These encouraging properties indicate that T-TiS2/BlueP and H(T)-NbS2/BlueP could serve as suitable anode materials for high-performance sodium-ion batteries.
  • 加载中
    1. [1]

      H.H. Ryu, H.W. Lim, S.G. Lee, Y.K. Sun, Nat. Energy 9 (2024) 47–56.

    2. [2]

      X.B. Jia, J. Wang, Y.F. Liu, et al., Adv. Mater. 36 (2024) e2307938.

    3. [3]

      Z. Zhao, H.N. Alshareef, Adv. Mater. 35 (2023) e2309223.

    4. [4]

      Y. Liu, C. Wang, S.G. Yoon, et al., Nat. Commun. 14 (2023) 3975.

    5. [5]

      J. Zhang, X. Wang, H. Li, et al., Adv. Funct. Mater. 33 (2023) 2301974.

    6. [6]

      X. Cheng, C. Tang, C. Yan, et al., Mater. Today Nano 22 (2023) 100321.

    7. [7]

      H.J. Liang, H.H. Liu, J.Z. Guo, et al., Energy Storage Mater. 66 (2024) 103230.

    8. [8]

      S. Gao, Z. Zhu, H. Fang, et al., Adv. Mater. 36 (2024) e2311523.

    9. [9]

      X. Zhou, Y. Huang, B. Wen, et al., Proc. Natl. Acad. Sci. U. S. A. 121 (2024) e2316914121.

    10. [10]

      Y. Su, B. Johannessen, S. Zhang, et al., Adv. Mater. 35 (2023) e2305149.

    11. [11]

      X. Yin, T. Liu, X. Yin, et al., Chin. Chem. Lett. 34 (2023) 107840.

    12. [12]

      Y. Tong, Y. Wu, Z. Liu, et al., Chin. Chem. Lett. 34 (2023) 107443.

    13. [13]

      Y. He, C. Liu, Z. Xie, et al., Adv. Compos. Mater. 6 (2023) 85.

    14. [14]

      T. Zheng, P. Hu, Z. Wang, T. Guo, Adv. Mater. 35 (2023) e2306577.

    15. [15]

      X. Yue, B. Qiao, J. Wang, et al., Renew. Sust. Energ. Rev. 185 (2023) 113592.

    16. [16]

      J. Rehman, S. Lin, M.K. Butt, et al., Chem. Eng. J. 461 (2023) 141924.

    17. [17]

      Z.Y. Gu, J.M. Cao, J.Z. Guo, et al., J. Am. Chem. Soc. 146 (2024) 4652–4664.  doi: 10.1021/jacs.3c11739

    18. [18]

      T. Zhang, M. Ren, Y. Huang, et al., Angew. Chem. Int. Ed. 63 (2024) e202316949.

    19. [19]

      Y. Bahari, B. Mortazavi, A. Rajabpour, et al., Energy Storage Mater. 35 (2021) 203–282.

    20. [20]

      C. Zhang, H. Pan, L. Sun, et al., Energy Storage Mater. 38 (2021) 354–378.

    21. [21]

      D.G. Ladha, Mater. Today Chem. 11 (2019) 94–111.

    22. [22]

      F. Nazneen, P. Mondal, N. Ahnaf Shahed, et al., Comput. Theor. Chem. 1224 (2023) 114105.

    23. [23]

      M. Bahrami, F. Shayeganfar, K. Mirabbaszadeh, A. Ramazani, Acta Mater. 239 (2022) 118292.

    24. [24]

      X. Tang, X. Guo, W. Wu, G. Wang, Adv. Energy Mater. 8 (2018) 1801897.

    25. [25]

      O. Folorunso, N. Kumar, Y. Hamam, et al., FlatChem 29 (2021) 100281.

    26. [26]

      J. Tang, X. Peng, T. Lin, et al., eScience 1 (2021) 203–211.

    27. [27]

      E. Yang, H. Ji, J. Kim, et al., Phys. Chem. Chem. Phys. 17 (2015) 5000–5005.

    28. [28]

      C. Eames, M.S. Islam, J. Am. Chem. Soc. 136 (2014) 16270–16276.  doi: 10.1021/ja508154e

    29. [29]

      Y. Tao, T. Huang, C. Ding, et al., Appl. Mater. Today 15 (2019) 18–33.

    30. [30]

      W. Yang, Y. Lu, C. Zhao, H. Liu, Electron. Mater. Lett. 16 (2020) 89–98.  doi: 10.1007/s13391-019-00178-z

    31. [31]

      M. Ma, Y. Yao, Y. Wu, Y. Yu, Adv. Fiber Mater. 2 (2020) 314–337.  doi: 10.1007/s42765-020-00052-w

    32. [32]

      F. Xue, F. Fan, Z. Zhu, et al., Nanoscale 15 (2023) 6822–6829.  doi: 10.1039/d3nr00866e

    33. [33]

      S. Wang, C. Qu, J. Wen, et al., Mater. Chem. Front. 7 (2023) 2779–2808.  doi: 10.1039/d2qm01200f

    34. [34]

      L. Zhang, H. Dong, C. Lv, et al., Inorg. Chem. Front. 10 (2023) 2607–2617.  doi: 10.1039/d3qi00308f

    35. [35]

      Q. Ji, C. Li, J. Wang, et al., Nano Lett. 17 (2017) 4908–4916.  doi: 10.1021/acs.nanolett.7b01914

    36. [36]

      X. Ou, X. Xiong, F. Zheng, et al., J. Power Sources 325 (2016) 410–416.

    37. [37]

      W. Ye, F. Wu, N. Shi, et al., Small 16 (2020) 1906607.

    38. [38]

      D. Wang, Y. Liu, X. Meng, et al., J. Mater. Chem. A 5 (2017) 21370–21377.

    39. [39]

      A.S. de Rezende Neto, L. Seixas, Int. J. Quantum Chem. 121 (2021) e26603.

    40. [40]

      E. Yang, H. Ji, Y. Jung, J. Phys. Chem. C 119 (2015) 26374–26380.  doi: 10.1021/acs.jpcc.5b09935

    41. [41]

      Z. Zhu, D. Tomanek, Phys. Rev. Lett. 112 (2014) 176802.  doi: 10.1103/PhysRevLett.112.176802

    42. [42]

      J.L. Zhang, S. Zhao, C. Han, et al., Nano Lett. 16 (2016) 4903–4908.  doi: 10.1021/acs.nanolett.6b01459

    43. [43]

      S. Mukherjee, L. Kavalsky, C.V. Singh, ACS Appl. Mater. Interfaces 10 (2018) 8630–8639.  doi: 10.1021/acsami.7b18595

    44. [44]

      G. Barik, S. Pal, J. Phys. Chem. C 123 (2019) 2808–2819.  doi: 10.1021/acs.jpcc.8b11512

    45. [45]

      Y. Li, W. Wu, F. Ma, J. Mater. Chem. A 7 (2019) 611–620.  doi: 10.1039/c8ta09423c

    46. [46]

      J. Bao, L. Zhu, H. Wang, et al., J. Phys. Chem. C 122 (2018) 23329–23335.  doi: 10.1021/acs.jpcc.8b07062

    47. [47]

      H. Lin, R. Jin, S. Zhu, Y. Huang, Appl. Surf. Sci. 505 (2020) 144518.

    48. [48]

      J. Bao, H. Li, Q. Duan, et al., Solid State Ionics 345 (2020) 115160.

    49. [49]

      Z. Mansouri, A. Al-Shami, A. Sibari, et al., Phys. Chem. Chem. Phys. 25 (2023) 3160–3174.  doi: 10.1039/d2cp04104a

    50. [50]

      N. Muhammad, M.U. Muzaffar, Z.J. Ding, Phys. Chem. Chem. Phys. 23 (2021) 17392–17401.  doi: 10.1039/d1cp01509e

    51. [51]

      H. Lin, X. Jin, N. Lou, et al., Appl. Surf. Sci. 533 (2020) 147478.

    52. [52]

      Q. Peng, Z. Wang, B. Sa, et al., ACS Appl. Mater. Interfaces 8 (2016) 13449–13457.  doi: 10.1021/acsami.6b03368

    53. [53]

      F. Yang, J. Han, L. Zhang, et al., Nanotechnology 31 (2020) 375706.  doi: 10.1088/1361-6528/ab978b

    54. [54]

      G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169–11186.

    55. [55]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.

    56. [56]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

    57. [57]

      J. Paier, R. Hirschl, M. Marsman, G. Kresse, J. Chem. Phys. 122 (2005) 234102.

    58. [58]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.

    59. [59]

      G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901–9904.

    60. [60]

      G. Henkelman, H. Jónsson, J. Chem. Phys. 113 (2000) 9978–9985.

    61. [61]

      G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97 (1992) 2635–2643.

    62. [62]

      J. Su, W. Li, T. Duan, et al., Carbon 153 (2019) 767–775.

    63. [63]

      C. Chowdhury, S. Karmakar, A. Datta, ACS Energy Lett. 1 (2016) 253–259.  doi: 10.1021/acsenergylett.6b00164

    64. [64]

      H. Wang, Z. Qiu, W. Xia, et al., J. Phys. Chem. Lett. 10 (2019) 6996–7001.  doi: 10.1021/acs.jpclett.9b02710

    65. [65]

      Y.Y. Cui, W. Fan, X. Liu, et al., Comput. Mater. Sci. 200 (2021) 110767.

    66. [66]

      J.A. Wilson, A.D. Yoffe, Adv. Phys. 18 (1969) 193–335.  doi: 10.1080/00018736900101307

    67. [67]

      J. Xiao, J. Wang, Z. Xue, et al., Int. J. Energy Res. 45 (2021) 13748–13759.  doi: 10.1002/er.6703

    68. [68]

      R. Zhao, C. Wan, P. Qian, X. Ju, Surf. Interfaces 38 (2023) 102851.

    69. [69]

      V. Wang, N. Xu, J. -C. Liu, et al., Comput. Phys. Commun. 267 (2021) 108033.

    70. [70]

      M. Born, K. Huang, M. Lax, Am. J. Phys. 23 (1955) 474 -474.  doi: 10.1119/1.1934059

    71. [71]

      B. Ghosh, S. Nahas, S. Bhowmick, A. Agarwal, Phys. Rev. B 91 (2015) 115433.  doi: 10.1103/PhysRevB.91.115433

    72. [72]

      C. Tang, M. Zhang, K. Zhang, J. Gong, Appl. Surf. Sci. 564 (2021) 150468.

    73. [73]

      R.T. Poole, Am. J. Phys. 48 (1980) 536–538.  doi: 10.1119/1.12056

    74. [74]

      X.M. Zhang, L. Jin, X.F. Dai, et al., Appl. Surf. Sci. 527 (2020) 146849.

    75. [75]

      Q. Li, J. Yang, L. Zhang, J. Phys. Chem. C 122 (2018) 18294–18303.  doi: 10.1021/acs.jpcc.8b05076

    76. [76]

      M. Salavati, T. Rabczuk, Comput. Mater. Sci. 160 (2019) 360–367.

    77. [77]

      Y.R. Wang, Z.Y. Jiao, S.H. Ma, Y.L. Guo, J. Power Sources 413 (2019) 117–124.  doi: 10.2112/si98-029.1

    78. [78]

      M. Ai, J.P. Sun, Z. Li, et al., J. Phys. Chem. C 125 (2021) 11391–11401.  doi: 10.1021/acs.jpcc.1c02373

    79. [79]

      D. Zhou, C. Li, F. Yin, et al., Chin. Chem. Lett. 31 (2020) 2325–2329.

    80. [80]

      C. Pu, J. Yu, L. Fu, et al., Chin. Chem. Lett. 32 (2021) 1081–1085.

    81. [81]

      J. Liu, C.S. Liu, X.J. Ye, X.H. Yan, J. Mater. Chem. A 6 (2018) 3634–3641.  doi: 10.1039/c7ta10248h

    82. [82]

      J. Jin, U. Schwingenschlögl, npj 2D Mater. Appl. 8 (2024) 31.  doi: 10.1038/s41699-024-00453-0

    83. [83]

      T. Yu, Z. Zhao, L. Liu, et al., J. Am. Chem. Soc. 140 (2018) 5962–5968.

    84. [84]

      Y.M. Ma, M. Eremets, A.R. Oganov, et al., Nature 458 (2009) 182–185.  doi: 10.1038/nature07786

    85. [85]

      M.S. Miao, R. Hoffmann, J. Am. Chem. Soc. 137 (2015) 3631–3637.  doi: 10.1021/jacs.5b00242

    86. [86]

      C. Chen, S. Guo, S. Gao, et al., Colloids Surf. A: Physicochem. Eng. Asp. 662 (2023) 131037.

    87. [87]

      D. Chodvadiya, U. Jha, P. Spiewak, et al., Appl. Surf. Sci. 593 (2022) 153424.

    88. [88]

      V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 17 (2015) 13921–13928.

    89. [89]

      J.N. Bao, L.S.W. Zhu, H.C. Wang, et al., J. Phys. Chem. C 122 (2018) 23329–23335.  doi: 10.1021/acs.jpcc.8b07062

    90. [90]

      K.M. Fan, T. Tang, S.Y. Wu, Z.Y. Zhang, Int. J. Mod. Phys. B 32 (2018) 1850010.

    91. [91]

      Y. Liu, Y. Ji, Y.M. Ding, et al., 2D Mater. 10 (2023) 025020.  doi: 10.1088/2053-1583/acc341

    92. [92]

      H.Y. Zhu, X.J. Ye, L. Meng, et al., Phys. Chem. Chem. Phys. 25 (2023) 11513–11521.  doi: 10.1039/d3cp00172e

  • 加载中
    1. [1]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    2. [2]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    5. [5]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    6. [6]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    7. [7]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

    8. [8]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    9. [9]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    10. [10]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    11. [11]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    12. [12]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    13. [13]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    14. [14]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    19. [19]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    20. [20]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return