Citation: Jun Luo, Yanya Liu, Jianghuaxiong Zhu, Chengxiong Wang, Yunkun Zhao, Dong Yan, Jian Li, Lichao Jia. A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion[J]. Chinese Chemical Letters, ;2025, 36(7): 110171. doi: 10.1016/j.cclet.2024.110171 shu

A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion

Figures(5)

  • Ethylene (C2H4) is a core raw material for the petrochemical industry. It is of economic and environmental significance to use C2H6 as the fuel and proton-conducting solid oxide fuel cells (P-SOFC) as the reactor to co-generate electricity and C2H4. However, the large-sized Ni particles in the conventional Ni-cermet anode directly crack C2H6; and oxide materials with a mild capability of breaking CC bonds are generally limited to electrolyte-supported structures with high ohmic impedance. This research for the first time constructs an anode-supported cell using BZCY as the porous scaffold and impregnated double perovskite (PrBa)0.95(Fe0.8Ni0.2)1.8Mo0.2O6-δ (PBFNM0.2) as the anode electrocatalysis. FeNi3 nanoparticles exsolve from PBFNM0.2 in H2 and uniformly distribute on the surface of perovskite substrate, acting as an active component for C2H6 dehydrogenation and electrochemical performance enhancement. The cell with 30 wt% PBFNM0.2 impregnated anode showing a high power density of 508 and 386 mW/cm2 with H2 and C2H6 fuels, respectively; high C2H6 conversion of 50.9%, C2H4 selectivity of 92.1%, and C2H4 yield of 46.9% are achieved at 750 ℃ and 700 mA/cm2, which outperforms all previously electrolyte-supported cells for co-generated electricity and ethylene. Moreover, the cell demonstrated excellent recoverability throughout three dehydrogenation-regeneration cycles. This work provides a practical way with broad application potential to create a novel anode-supported cell efficiently realizing the co-generation of electricity and C2H4 from C2H6.
  • 加载中
    1. [1]

      Y. Yin, H. Dai, S. Yu, et al., SusMat 2 (2022) 607–616.  doi: 10.1002/sus2.79

    2. [2]

      Y. Chen, B. deGlee, Y. Tang, et al., Nat. Energy 3 (2018) 1042–1050.

    3. [3]

      P. Qiu, C. Li, B. Liu, et al., J. Adv. Ceram. 12 (2023) 1463–1510.  doi: 10.26599/jac.2023.9220767

    4. [4]

      Y. Yin, D. Xiao, S. Wu, et al., SusMat 3 (2023) 697–708.  doi: 10.1002/sus2.156

    5. [5]

      T. Hibino, A. Hashimoto, T. Inoue, et al., Science 288 (2000) 2031–2033.

    6. [6]

      Z. Zhan, S.A. Barnett, Science 308 (2005) 844–847.  doi: 10.1126/science.1109213

    7. [7]

      M. Cimenti, J. Hill, Energies 2 (2009) 377–410.  doi: 10.3390/en20200377

    8. [8]

      J. Luo, K. Zhao, J. Zhao, et al., J. Adv. Ceram. 12 (2023) 474–486.  doi: 10.26599/jac.2023.9220697

    9. [9]

      R.J. Kee, H. Zhu, A.M. Sukeshini, et al., Combust. Sci. Technol. 180 (2008) 1207–1244.  doi: 10.1080/00102200801963458

    10. [10]

      Y. Bai, Y. Liu, Y. Tang, et al., Int. J. Hydrogen Energy 36 (2011) 9189–9194.

    11. [11]

      D. Gu, G. Zhang, J. Zou, Chin. Chem. Lett. 32 (2021) 3548–3552.

    12. [12]

      F. He, M. Hou, Z. Du, et al., Adv. Mater. 35 (2023) e2304957.

    13. [13]

      T. Ren, M. Patel, K. Blok, Energy 31 (2006) 425–451.

    14. [14]

      X.Z. Fu, X.X. Luo, J.L. Luo, et al., J. Power Sources 196 (2011) 1036–1041.

    15. [15]

      J.Y. Lin, L. Shao, F.Z. Si, et al., J. Phys. Chem. C 122 (2018) 4165–4171.  doi: 10.1021/acs.jpcc.7b11680

    16. [16]

      S. Liu, K.T. Chuang, J.L. Luo, ACS Catal. 6 (2015) 760–768.

    17. [17]

      J.H. Li, X.Z. Fu, G.H. Zhou, et al., Adv. Phys. Chem. 2011 (2011) 1–6.

    18. [18]

      S. Liu, Y. Behnamian, K.T. Chuang, et al., J. Power Sources 298 (2015) 23–29.

    19. [19]

      L. Shao, F. Si, X.Z. Fu, et al., Int. J. Hydrogen Energy 43 (2018) 7511–7514.

    20. [20]

      L. Wang, Y. Fan, J. Li, et al., Ceram. Int. 47 (2021) 24106–24114.

    21. [21]

      C. Wu, L. Wang, Z. Xiao, et al., Phys. Chem. Chem. Phys. 22 (2020) 724–733.  doi: 10.1039/c9cp05022a

    22. [22]

      K. Wei, X. Wang, R.A. Budiman, et al., J. Mater. Sci. 53 (2018) 8747–8765.  doi: 10.1007/s10853-018-2205-8

    23. [23]

      L. Shu, J. Sunarso, S.S. Hashim, et al., Int. J. Hydrogen Energy 44 (2019) 31275–31304.

    24. [24]

      J.M. López Nieto, B. Solsona, R.K. Grasselli, et al., Top. Catal. 57 (2014) 1248–1255.  doi: 10.1007/s11244-014-0288-2

    25. [25]

      J. Li, S. Wang, J. Chang, et al., Adv. Powder Mater. 1 (2022) 100030.

    26. [26]

      M. Kahlaoui, A. Inoubli, S. Chefi, et al., Int. J. Hydrogen Energy 41 (2016) 4751–4764.

    27. [27]

      J. Sun, R. Ren, H. Yue, et al., Chin. Chem. Lett. 34 (2023) 107776.

    28. [28]

      J. Hwang, R.R. Rao, L. Giordano, et al., Science 358 (2017) 751–756.  doi: 10.1126/science.aam7092

    29. [29]

      A.P. Anantharaman, H.P. Dasari, Ceram. Int. 47 (2021) 4367–4388.

    30. [30]

      A. Kaiser, J.L. Bradley, P.R. Slater, et al., Solid State Ionics 135 (2000) 519–524.

    31. [31]

      E.W. McFarland, H. Metiu, Chem. Rev. 113 (2013) 4391–4427.  doi: 10.1021/cr300418s

    32. [32]

      H.X. Dai, C.F. Ng, C.T. Au, J. Catal. 189 (2000) 52–62.

    33. [33]

      X. Yang, T. Wei, B. Chi, et al., J. Catal. 377 (2019) 629–637.

    34. [34]

      R. Watanabe, Y. Hondo, K. Mukawa, et al., J. Mol. Catal. A: Chem. 377 (2013) 74–84.

    35. [35]

      V. Cortés Corberán, Top. Catal. 52 (2009) 962–969.  doi: 10.1007/s11244-009-9246-9

    36. [36]

      Y. Gao, F. Haeri, F. He, et al., ACS Catal. 8 (2018) 1757–1766.  doi: 10.1021/acscatal.7b03928

    37. [37]

      S. Tao, J.T. Irvine, Nat. Mater. 2 (2003) 320–323.

    38. [38]

      X. Zhang, Y. Tong, T. Liu, et al., SusMat 2 (2022) 487–501.

    39. [39]

      X. Yang, W. Sun, M. Ma, et al., Ind. Eng. Chem. Res. 60 (2021) 7826–7834.  doi: 10.1021/acs.iecr.1c00806

    40. [40]

      Q. Liu, X. Dong, G. Xiao, et al., Adv. Mater. 22 (2010) 5478–5482.  doi: 10.1002/adma.201001044

    41. [41]

      S. Sengodan, S. Choi, A. Jun, et al., Nat. Mater. 14 (2015) 205–209.  doi: 10.1038/nmat4166

    42. [42]

      H. Ding, S. Fang, Y. Yang, et al., J. Power Sources 401 (2018) 322–328.

    43. [43]

      H. Ding, Z. Tao, S. Liu, et al., Sci. Rep. 5 (2015) 18129.

    44. [44]

      Y. Ling, T. Guo, Y. Guo, et al., J. Adv. Ceram. 10 (2021) 1052–1060.  doi: 10.1007/s40145-021-0488-8

    45. [45]

      D. Zhang, Y. Wang, Y. Peng, et al., Adv. Powder Mater. 2 (2023) 100129.

    46. [46]

      C. Li, Y. Deng, L. Yang, et al., Adv. Powder Mater. 2 (2023) 100133.

    47. [47]

      Y. Niu, W. Huo, Y. Yu, et al., Chin. Chem. Lett. 33 (2022) 674–682.

    48. [48]

      Z. Liu, B. Liu, D. Ding, et al., J. Power Sources 237 (2013) 243–259.

    49. [49]

      Y.H. Huang, R.I. Dass, J.C. Denyszyn, et al., J. Electrochem. Soc. 153 (2006) A1266.  doi: 10.1149/1.2195882

    50. [50]

      M. Yang, L. Huang, X. Lv, et al., Catal. Commun. 174 (2023) 106575.

    51. [51]

      V. Fung, F. Tao, D.E. Jiang, Catal. Sci. Technol. 6 (2016) 6861–6869.

    52. [52]

      M. Tasioula, E. de Clermont Gallerande, S.A. Theofanidis, et al., ACS Catal. 13 (2023) 2176–2189.  doi: 10.1021/acscatal.2c05338

    53. [53]

      S. Najari, S. Saeidi, P. Concepcion, et al., Chem. Soc. Rev. 50 (2021) 4564–4605.  doi: 10.1039/d0cs01518k

    54. [54]

      S. Yang, Z. Qi, Y. Wen, et al., Chem. Eng. J. 452 (2023) 139657.

    55. [55]

      M.L. Yang, Y.A. Zhu, C. Fan, et al., Phys. Chem. Chem. Phys. 13 (2011) 3257–3267.  doi: 10.1039/c0cp00341g

    56. [56]

      J.J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, et al., Chem. Rev. 114 (2014) 10613–10653.  doi: 10.1021/cr5002436

    57. [57]

      J. Liu, W. Luo, Y. Yin, et al., J. Catal. 396 (2021) 333–341.

    58. [58]

      J. Zhu, M.L. Yang, Y. Yu, et al., ACS Catal. 5 (2015) 6310–6319.  doi: 10.1021/acscatal.5b01423

    59. [59]

      M.H. Hansen, J.K. Nørskov, T. Bligaard, J. Catal. 374 (2019) 161–170.

    60. [60]

      V. Galvita, G. Siddiqi, P. Sun, et al., J. Catal. 271 (2010) 209–219.

    61. [61]

      R.M. Rioux, H. Song, J.D. Hoefelmeyer, et al., J. Phys. Chem. B 109 (2005) 2192–2202.  doi: 10.1021/jp048867x

    62. [62]

      A. Iglesias-Juez, A.M. Beale, K. Maaijen, et al., J. Catal. 276 (2010) 268–279.

    63. [63]

      Y. Hisai, K. Murakami, Y. Kamite, et al., Chem. Commun. 56 (2020) 2699–2702.  doi: 10.1039/c9cc08757e

    64. [64]

      I.H. Kim, D.K. Lim, Y. Namgung, et al., Acta Mater 249 (2023) 118800.

    65. [65]

      Y. Lin, W. Zhou, J. Sunarso, et al., Int. J. Hydrogen Energy 37 (2012) 484–497.

    66. [66]

      H. Zimmermann, R. Walzl, Ullmann's Encyclopedia of Industrial Chemistry, Wiley, Weinheim, 2009.

    67. [67]

      J. Luo, L. Jia, D. Yan, et al., Acta Chim. Sin. 80 (2022) 317–326.  doi: 10.6023/a21100451

    68. [68]

      O.O. James, S. Mandal, N. Alele, et al., Fuel Process. Technol. 149 (2016) 239–255.

    69. [69]

      M.M. Bhasin, J.H. McCain, B.V. Vora, et al., Appl. Catal. A 221 (2001) 397–419.

    70. [70]

      C.A. Gärtner, A.C. van Veen, J.A. Lercher, ChemCatChem 5 (2013) 3196–3217.  doi: 10.1002/cctc.201200966

    71. [71]

      A.J. Carrillo, J.M. Serra, Catalysts 11 (2021) 741.  doi: 10.3390/catal11060741

    72. [72]

      D. Neagu, J.T.S. Irvine, J. Wang, et al., J. Phys. Energy 5 (2023) 031501.  doi: 10.1088/2515-7655/acd146

  • 加载中
    1. [1]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    2. [2]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    3. [3]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    4. [4]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    5. [5]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    6. [6]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    7. [7]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    8. [8]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    9. [9]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    10. [10]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    11. [11]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    12. [12]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    13. [13]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    14. [14]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    15. [15]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    16. [16]

      Zhenyang YuYueyue GuQi SunYang ZhengYifang ZhangMengmeng ZhangDelin ZhangZhijia ZhangYong Jiang . Research progress of modified metal current collectors in sodium metal anodes. Chinese Chemical Letters, 2025, 36(6): 109997-. doi: 10.1016/j.cclet.2024.109997

    17. [17]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    18. [18]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    19. [19]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

    20. [20]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return