Citation: Mengya Ge, Zijie Zhou, Huaiyang Zhu, Ying Wang, Chao Wang, Chao Lai, Qinghong Wang. Multifunctional gel electrolytes for high-performance zinc metal batteries[J]. Chinese Chemical Letters, ;2025, 36(7): 110121. doi: 10.1016/j.cclet.2024.110121 shu

Multifunctional gel electrolytes for high-performance zinc metal batteries

    * Corresponding author..
    E-mail address: wangqh@jsnu.edu.cn (Q. Wang).
    1 These authors contributed equally to this work.
  • Received Date: 9 April 2024
    Revised Date: 24 May 2024
    Accepted Date: 13 June 2024
    Available Online: 13 June 2024

Figures(8)

  • Zinc metal batteries (ZMBs) are considered to be promising energy storage devices in the field of large-scale energy storage due to the advantages of high energy density, good safety and environmental friendliness. However, the commercialization of ZMBs has been hampered because of the problems caused by aqueous electrolytes, such as hydrogen evolution reaction, electrolyte leakage, and water evaporation. Gel polymer electrolytes (GPEs) have attracted extensive attention due to the features of high security and low water content. However, the disadvantages of poor ion transport rate, easily freezing at low temperature and low mechanical strength are not conducive to the rapid development and practical application of ZMBs. The rational design and fabrication of multifunctional polymer-based frameworks are considered to be effective strategy to obtain high-performance GPEs. In this review, the recent advancements of GPEs with various polymers are generalized. The strategies for the improvement of ionic conductivity, low temperature resistance and mechanical strength of these GPEs, such as adding inorganic fillers, building double cross-linked networks and introducing functional groups, are summarized. The effects of the GPEs on the self-healable ability, inhibiting dendrite growth, and cycling stability of the ZMBs are also discussed. Finally, the key problems and development prospects of GPEs are proposed, which will provide possibility for the further development of GPEs.
  • 加载中
    1. [1]

      J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.  doi: 10.1039/c6cs00776g

    2. [2]

      R. Hou, B. Liu, Y. Sun, et al., Nano Energy 72 (2020) 104728.

    3. [3]

      H. Pan, Y.S. Hu, L. Chen, Energy Environ. Sci. 6 (2013) 2338–2360.  doi: 10.1039/c3ee40847g

    4. [4]

      N. Nitta, F. Wu, J.T. Lee, et al., Mater. Today 18 (2015) 252–264.

    5. [5]

      K. Kang, Y.S. Meng, J. Breger, et al., Science 311 (2006) 977–980.  doi: 10.1126/science.1122152

    6. [6]

      E. Fan, L. Li, Z. Wang, et al., Chem. Rev. 120 (2020) 7020–7063.  doi: 10.1021/acs.chemrev.9b00535

    7. [7]

      H. Wang, Z. Yu, X. Kong, et al., Adv. Mater. 33 (2021) 2008619.

    8. [8]

      B. Tang, L. Shan, S. Liang, et al., Energy Environ. Sci. 12 (2019) 3288–3304.  doi: 10.1039/c9ee02526j

    9. [9]

      M. Li, J. Lu, Z. Chen, et al., Adv. Mater. 30 (2018) 1800561.  doi: 10.1002/adma.201800561

    10. [10]

      X. Zhang, Z. Li, L. Luo, et al., Energy 238 (2022) 121652.

    11. [11]

      M. Bao, Z. Zhang, X. An, et al., Nano Res. 16 (2022) 2445–2453.

    12. [12]

      H. Zhang, X. Liu, H. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 598–616.  doi: 10.1002/anie.202004433

    13. [13]

      W. Zhang, G. He, Angew. Chem. Int. Ed. 62 (2023) e202218466.  doi: 10.1002/anie.202218466

    14. [14]

      J. Li, Q. Kuang, G. Wang, et al., Electrochim. Acta 441 (2023) 141841.

    15. [15]

      F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.  doi: 10.1038/s41563-018-0063-z

    16. [16]

      Y. Shi, Y. Chen, L. Shi, et al., Small 16 (2020) e2000730.  doi: 10.1002/smll.202000730

    17. [17]

      T. Shoji, M. Hishinuma, T. Yamamoto, J. Appl. Electrochem. 18 (1988) 521–526.

    18. [18]

      C. Xu, B. Li, H. Du, et al., Angew. Chem. Int. Ed. 51 (2012) 933–935.  doi: 10.1002/anie.201106307

    19. [19]

      C. Guo, S. Yi, R. Si, et al., Adv. Energy Mater. 12 (2022) 2202039.

    20. [20]

      J. Zhou, Q. Li, X. Hu, et al., Chin. Chem. Lett. 35 (2023) 109143.

    21. [21]

      Y. Zhang, M. Zhu, K. Wu, et al., J. Mater. Chem. A 9 (2021) 4253–4261.  doi: 10.1039/d0ta11668h

    22. [22]

      L. Ma, S. Chen, H. Li, et al., Energy Environ. Sci. 11 (2018) 2521–2530.  doi: 10.1039/c8ee01415a

    23. [23]

      X. Jia, C. Liu, Z.G. Neale, et al., Chem. Rev. 120 (2020) 7795–7866.  doi: 10.1021/acs.chemrev.9b00628

    24. [24]

      X. Zhang, J.P. Hu, N. Fu, et al., InfoMat 4 (2022) e12306.

    25. [25]

      W. Du, E.H. Ang, Y. Yang, et al., Energy Environ. Sci. 13 (2020) 3330–3360.  doi: 10.1039/d0ee02079f

    26. [26]

      D. Chen, M. Lu, D. Cai, et al., J. Energy Chem. 54 (2021) 712–726.  doi: 10.1016/j.jechem.2020.06.016

    27. [27]

      X. Zeng, J. Hao, Z. Wang, et al., Energy Stor. Mater. 20 (2019) 410–437.

    28. [28]

      T.H. Muster, I.S. Cole, Corros. Sci. 46 (2004) 2319–2335.

    29. [29]

      R. Zhao, X. Dong, P. Liang, et al., Adv. Mater. 35 (2023) 2209288.  doi: 10.1002/adma.202209288

    30. [30]

      J. Cao, D. Zhang, X. Zhang, et al., Energy Environ. Sci. 15 (2022) 499–528.  doi: 10.1039/d1ee03377h

    31. [31]

      A. Naveed, T. Rasheed, B. Raza, et al., Energy Stor. Mater. 44 (2022) 206–230.  doi: 10.1016/j.ensm.2021.10.005

    32. [32]

      Q. Li, A. Chen, D. Wang, et al., Nat. Commun. 13 (2022) 3699.

    33. [33]

      B. Wu, B. Guo, Y. Chen, et al., Energy Stor. Mater. 54 (2023) 75–84.

    34. [34]

      P. Xue, C. Guo, L. Li, et al., Adv. Mater. 34 (2022) 2110047.  doi: 10.1002/adma.202110047

    35. [35]

      Z. Ye, Z. Cao, M.O. Lam Chee, et al., Energy Stor. Mater. 32 (2020) 290–305.

    36. [36]

      J. Hao, L. Yuan, C. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7366–7375.  doi: 10.1002/anie.202016531

    37. [37]

      C. Li, Z. Sun, T. Yang, et al., Adv. Mater. 32 (2020) 2003425.  doi: 10.1002/adma.202003425

    38. [38]

      J. Cao, D. Zhang, C. Gu, et al., Nano Energy 89 (2021) 106322.  doi: 10.1016/j.nanoen.2021.106322

    39. [39]

      H. Li, S. Guo, H. Zhou, Energy Stor. Mater. 56 (2023) 227–257.  doi: 10.1117/12.3007414

    40. [40]

      Z. Zhang, B. Xi, X. Ma, et al., SusMat 2 (2022) 114–141.  doi: 10.1002/sus2.53

    41. [41]

      Y. Shang, P. Kumar, T. Musso, et al., Adv. Funct. Mater. 32 (2022) 2200606.

    42. [42]

      X. Wang, K. Feng, B. Sang, et al., Adv. Energy Mater. 13 (2023) 2301670.

    43. [43]

      K.X. Xie, K.X. Ren, Q.H. Wang, et al., eScience 3 (2023) 100153.

    44. [44]

      F. Wan, Y. Zhang, L. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 7062–7067.  doi: 10.1002/anie.201902679

    45. [45]

      C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.  doi: 10.1039/c8cc07730d

    46. [46]

      Y. Qi, M. Liao, Y. Xie, et al., Chem. Eng. J. 470 (2023) 143971.

    47. [47]

      H. Li, L. Ma, C. Han, et al., Nano Energy 62 (2019) 550–587.

    48. [48]

      Z. Pan, J. Yang, J. Jiang, et al., Mater. Today Energy 18 (2020) 100523.  doi: 10.1016/j.mtener.2020.100523

    49. [49]

      Z. Li, L. Wu, S. Dong, et al., Adv. Funct. Mater. 31 (2020) 2006495.  doi: 10.1002/adfm.202006495

    50. [50]

      T. Zhang, Y. Tang, S. Guo, et al., Energy Environ. Sci. 13 (2020) 4625–4665.  doi: 10.1039/d0ee02620d

    51. [51]

      J. Huang, X. Dong, N. Wang, et al., Curr. Opin. Electrochem. 33 (2022) 100949.

    52. [52]

      M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, et al., Nat. Energy 6 (2021) 227–239.  doi: 10.1038/s41560-020-00759-5

    53. [53]

      X. Xu, K.S. Hui, K.N. Hui, et al., Mater. Horiz. 7 (2020) 1246–1278.  doi: 10.1039/c9mh01701a

    54. [54]

      Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.  doi: 10.1039/c9cs00131j

    55. [55]

      D. Kundu, B.D. Adams, V. Duffort, et al., Nat. Energy 1 (2016) 16119.

    56. [56]

      S. Gao, Z. Zhang, F. Mao, et al., Mater. Chem. Front. 7 (2023) 3232–3258.  doi: 10.1039/d3qm00104k

    57. [57]

      Q. Yang, Q. Li, Z. Liu, et al., Adv. Mater. 32 (2020) 2001854.

    58. [58]

      I. Dueramae, M. Okhawilai, P. Kasemsiri, et al., Sci. Rep. 10 (2020) 12587.  doi: 10.1038/s41598-020-69521-x

    59. [59]

      Y. Zhang, X. Zheng, N. Wang, et al., Chem. Sci. 13 (2022) 14246–14263.  doi: 10.1039/d2sc04945g

    60. [60]

      P. Heremans, A.K. Tripathi, A. de Jamblinne de Meux, et al., Adv. Mater. 28 (2016) 4266–4282.  doi: 10.1002/adma.201504360

    61. [61]

      R. Chen, W. Qu, X. Guo, et al., Mater. Horiz. 3 (2016) 487–516.

    62. [62]

      R.C. Agrawal, G.P. Pandey, J. Phys. D: Appl. Phys. 41 (2008) 223001.  doi: 10.1088/0022-3727/41/22/223001

    63. [63]

      L. Long, S. Wang, M. Xiao, et al., J. Mater. Chem. A 4 (2016) 10038–10069.

    64. [64]

      S. Guo, L. Qin, C. Hu, et al., Adv. Energy Mater. 12 (2022) 2200730.  doi: 10.1002/aenm.202200730

    65. [65]

      K. Wu, J. Huang, J. Yi, et al., Adv. Energy Mater. 10 (2020) 1903977.  doi: 10.1002/aenm.201903977

    66. [66]

      B. Zhang, L. Qin, Y. Fang, et al., Sci. Bull. 67 (2022) 955–962.  doi: 10.1016/j.scib.2022.01.027

    67. [67]

      J. Li, P. Yu, S. Zhang, et al., J. Colloid Interface Sci. 600 (2021) 586–593.

    68. [68]

      Y. Liang, Z. Wu, Y. Wei, et al., Nanomicro. Lett. 14 (2022) 52.

    69. [69]

      M. Sun, Z. Wang, J. Jiang, et al., Chin. Chem. Lett. 35 (2024) 109393.

    70. [70]

      T.L. Sun, T. Kurokawa, S. Kuroda, et al., Nat. Mater. 12 (2013) 932–937.  doi: 10.1038/nmat3713

    71. [71]

      N. Wang, R. Zhou, Z. Zheng, et al., Chem. Eng. J. 425 (2021) e131454.

    72. [72]

      X. Dong, Y. Wang, Y. Xia, Acc. Chem. Res. 54 (2021) 3883–3894.  doi: 10.1021/acs.accounts.1c00420

    73. [73]

      F. Cao, B. Wu, T. Li, et al., Nano Res. 15 (2021) 2030–2039.

    74. [74]

      J. Liang, J. Luo, Q. Sun, et al., Energy Stor. Mater. 21 (2019) 308–334.

    75. [75]

      L.X. Hou, H. Ju, X.P. Hao, et al., Adv. Mater. 35 (2023) 2300244.  doi: 10.1002/adma.202300244

    76. [76]

      Y. Jian, S.H. Wang, J. Zhang, et al., Mater. Horiz. 8 (2021) 351–369.  doi: 10.1039/d0mh01029d

    77. [77]

      K. Xu, Chem. Rev. 114 (2014) 11503–11618.  doi: 10.1021/cr500003w

    78. [78]

      B. Wang, J. Li, C. Hou, et al., ACS Appl. Mater. Interfaces 12 (2020) 46005–46014.  doi: 10.1021/acsami.0c12313

    79. [79]

      H. Cha, J. Kim, Y. Lee, et al., Small 14 (2017) 1702989.

    80. [80]

      A. Chen, C. Zhao, J. Gao, et al., Energy Environ. Sci. 16 (2023) 275–284.  doi: 10.1039/d2ee02931f

    81. [81]

      X. Chen, W. Li, S. Hu, et al., Nano Energy 98 (2022) 107269.  doi: 10.1016/j.nanoen.2022.107269

    82. [82]

      X. Xiao, X. Xiao, Y. Zhou, et al., Sci. Adv. 7 (2021) eabl3742.  doi: 10.1126/sciadv.abl3742

    83. [83]

      Y. Yu, Z. Guo, Y. Zhao, et al., Adv. Mater. 34 (2022) 2107523.  doi: 10.1002/adma.202107523

    84. [84]

      X. Fan, J. Liu, J. Ding, et al., Front. Chem. 7 (2019) 678.  doi: 10.3389/fchem.2019.00678

    85. [85]

      Y. Li, C. Zhong, J. Liu, et al., Adv. Mater. 30 (2017) 1703657.  doi: 10.1002/adma.201703657

    86. [86]

      Y. Li, H. Dai, Chem. Soc. Rev. 43 (2014) 5257–5275.  doi: 10.1039/c4cs00015c

    87. [87]

      K.N. Grew, W.K.S. Chiu, J. Electrochem. Soc. 157 (2010) B327–B337.  doi: 10.1149/1.3273200

    88. [88]

      Y. Huang, Z. Li, Z. Pei, et al., Adv. Energy Mater. 8 (2018) 1802288.

    89. [89]

      Y. Zhou, J. Pan, X. Ou, et al., Adv. Energy Mater. 11 (2021) 2102047.

    90. [90]

      Z. Pei, Z. Yuan, C. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 4793–4799.  doi: 10.1002/anie.201915836

    91. [91]

      X. Liu, X. Fan, B. Liu, et al., Adv. Mater. 33 (2021) 2006461.  doi: 10.1002/adma.202006461

    92. [92]

      X. Hu, L. Fan, G. Qin, et al., J. Power Sources 414 (2019) 201–209.

    93. [93]

      N. Sun, F. Lu, Y. Yu, et al., ACS Appl. Mater. Interfaces 12 (2020) 11778–11788.  doi: 10.1021/acsami.0c00325

    94. [94]

      P. Zhang, K. Wang, Y. Zuo, et al., Chem. Eng. J. 451 (2023) 138622.  doi: 10.1016/j.cej.2022.138622

    95. [95]

      S.W. Song, H. Kim, S. Shin, et al., Energy Stor. Mater. 60 (2023) 102802.

    96. [96]

      H.W. Kim, J.M. Lim, H. -J. Lee, et al., J. Mater. Chem. A 4 (2016) 3711–3720.

    97. [97]

      G. Zhang, X. Cai, C. Li, et al., ACS Appl. Polym. Mater. 5 (2023) 3622–3631.  doi: 10.1021/acsapm.3c00270

    98. [98]

      Y. Yang, T. Wang, Y. Guo, et al., Mater. Today Chem. 29 (2023) 101384.

    99. [99]

      Q. Liu, R. Liu, C. He, et al., eScience 2 (2022) 453–466.

    100. [100]

      X. Fan, H. Wang, X. Liu, et al., Adv. Mater. 35 (2022) 2209290.  doi: 10.1002/adma.202209290

    101. [101]

      A.A.I. Velez, E. Reyes, A. Diaz-Barrios, et al., Gels 7 (2021) 256.  doi: 10.3390/gels7040256

    102. [102]

      Z. Song, J. Ding, B. Liu, et al., Adv. Mater. 32 (2020) 1908127.

    103. [103]

      M. Chen, W. Zhou, A. Wang, et al., J. Mater. Chem. A 8 (2020) 6828–6841.  doi: 10.1039/d0ta01553a

    104. [104]

      F. Chen, D. Zhou, J. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 6568–6571.  doi: 10.1002/anie.201803366

    105. [105]

      Z. Chen, W. Li, X. Yang, et al., J. Power Sources 523 (2022) 231020.

    106. [106]

      C. Liu, Y. Tian, Y. An, et al., Chem. Eng. J. 430 (2022) 132748.

    107. [107]

      X. Fan, J. Liu, Z. Song, et al., Nano Energy 56 (2019) 454–462.

    108. [108]

      C. Lin, S.S. Shinde, X. Li, et al., ChemSusChem 11 (2018) 3215–3224.  doi: 10.1002/cssc.201801274

    109. [109]

      S. Huang, F. Wan, S. Bi, et al., Angew. Chem. Int. Ed. 58 (2019) 4313–4317.  doi: 10.1002/anie.201814653

    110. [110]

      M. Li, B. Liu, X. Fan, et al., ACS Appl. Mater. Interfaces 11 (2019) 28909–28917.  doi: 10.1021/acsami.9b09086

    111. [111]

      Y. Zeng, X. Zhang, Y. Meng, et al., Adv. Mater. 29 (2017) 1700274.

    112. [112]

      J. Lyu, Q. Zhou, H. Wang, et al., Adv. Sci. 10 (2023) 2206591.  doi: 10.1002/advs.202206591

    113. [113]

      F. Santos, J.P. Tafur, J. Abad, et al., J. Electroanal. Chem. 850 (2019) 113380.  doi: 10.1016/j.jelechem.2019.113380

    114. [114]

      F. Khodaverdi, A. Vaziri, M. Javanbakht, et al., J. Appl. Polym. Sci. 138 (2020) e50088.

    115. [115]

      Y. Zhao, L. Ma, Y. Zhu, et al., ACS Nano 13 (2019) 7270–7280.  doi: 10.1021/acsnano.9b02986

    116. [116]

      L. Ma, Y. Zhao, X. Ji, et al., Adv. Energy Mater. 9 (2019) 1900509.

    117. [117]

      L. Ma, S. Chen, D. Wang, et al., Adv. Energy Mater. 9 (2019) 1803046.  doi: 10.1002/aenm.201803046

    118. [118]

      H. Dong, J. Li, J. Guo, et al., Adv. Mater. 33 (2021) 2007548.

    119. [119]

      X. Cheng, J. Pan, Y. Zhao, et al., Adv. Energy Mater. 8 (2017) 1702184.  doi: 10.1002/aenm.201702184

    120. [120]

      Y. Huang, M. Zhong, F. Shi, et al., Angew. Chem. Int. Ed. 56 (2017) 9141–9145.  doi: 10.1002/anie.201705212

    121. [121]

      H. Li, Z. Liu, G. Liang, et al., ACS Nano 12 (2018) 3140–3148.  doi: 10.1021/acsnano.7b09003

    122. [122]

      A. Abbasi, Y. Xu, E. Abouzari-Lotf, et al., Electrochim. Acta 435 (2022) 141365.

    123. [123]

      P. Zhang, K. Wang, Y. Zuo, et al., ACS Appl. Mater. Interfaces 14 (2022) 49109–49118.  doi: 10.1021/acsami.2c13625

    124. [124]

      M. Liu, M. Qin, G. Fang, et al., J. Alloys Compd. 959 (2023) 170455.

    125. [125]

      Y. Quan, M. Chen, W. Zhou, et al., Front Chem. 8 (2020) 603.  doi: 10.3389/fchem.2020.00603

    126. [126]

      D. Ma, H. He, X. Huang, et al., J. Mater. Sci. : Mater. Electron. 35 (2024) 140.

    127. [127]

      P. Xu, C. Wang, B. Zhao, et al., J. Power Sources 506 (2021) 230196.  doi: 10.1016/j.jpowsour.2021.230196

    128. [128]

      J. Huang, X. Chi, Y. Du, et al., ACS Appl. Mater. Interfaces 13 (2021) 4008–4016.  doi: 10.1021/acsami.0c20241

    129. [129]

      L. Ning, J. Zhou, T. Xue, et al., J. Energy Storage 74 (2023) 109508.

    130. [130]

      X. Ai, Q. Zhao, Y. Duan, et al., Cell Rep. Phys. Sci. 3 (2022) 101148.  doi: 10.1016/j.xcrp.2022.101148

    131. [131]

      Y. Sun, H. Ma, X. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2101277.

    132. [132]

      X. Ji, eScience 1 (2021) 99–107.

    133. [133]

      K. Zhou, N. Wang, X. Qiu, et al., ChemSusChem 15 (2022) e202201739.  doi: 10.1002/cssc.202201739

    134. [134]

      X. Jin, L. Song, H. Yang, et al., Energy Environ. Sci. 14 (2021) 3075–3085.  doi: 10.1039/d0ee04066e

    135. [135]

      X. Jin, L. Song, C. Dai, et al., Energy Stor. Mater. 44 (2022) 517–526.

    136. [136]

      Q. Wang, Q. Feng, Y. Lei, et al., Nat. Commun. 13 (2022) 3689.

    137. [137]

      L. Han, K. Liu, M. Wang, et al., Adv. Funct. Mater. 28 (2017) 1704195.

    138. [138]

      R. Wang, M. Yao, S. Huang, et al., Sci. China Mater. 65 (2022) 2189–2196.  doi: 10.1007/s40843-021-1924-2

    139. [139]

      T. Wei, Y. Ren, Z. Li, et al., Chem. Eng. J. 434 (2022) 134646.

    140. [140]

      Y. Shi, R. Wang, S. Bi, et al., Adv. Funct. Mater. 33 (2023) 2214546.

    141. [141]

      M. Jiao, L. Dai, H.R. Ren, et al., Angew. Chem. Int. Ed. 62 (2023) e202301114.  doi: 10.1002/anie.202301114

    142. [142]

      L. Yan, Y. Qi, X. Dong, et al., eScience 1 (2021) 212–218.

    143. [143]

      Z. Wang, H. Li, Z. Tang, et al., Adv. Funct. Mater. 28 (2018) 1804560.

    144. [144]

      F. Mo, M. Cui, N. He, et al., Mater. Res. Lett. 10 (2022) 501–520.  doi: 10.1080/21663831.2022.2059412

    145. [145]

      Z. Song, X. Liu, J. Ding, et al., ACS Appl. Mater. Interfaces 14 (2022) 49801–49810.  doi: 10.1021/acsami.2c14470

    146. [146]

      Y. Wei, M. Wang, N. Xu, et al., ACS Appl. Mater. Interfaces 10 (2018) 29593–29598.  doi: 10.1021/acsami.8b09545

    147. [147]

      K. Tang, J. Fu, M. Wu, et al., Small Methods 6 (2021) 2101276.

    148. [148]

      X. Jia, J. Ma, L. Zhang, et al., J. Electrochem. Soc. 169 (2022) 120526.  doi: 10.1149/1945-7111/acadaf

    149. [149]

      G. Zhang, X. Cai, C. Li, et al., Int. J. Biol. Macromol. 221 (2022) 446–455.

    150. [150]

      L. Sartore, S. Pandini, F. Baldi, et al., J. Appl. Polym. Sci. 134 (2017) 45655.

    151. [151]

      D. Wang, Z. Li, L. Yang, et al., Chem. Eng. J. 454 (2023) 140090.

    152. [152]

      X. Tong, G. Sheng, D. Yang, et al., Mater. Horiz. 9 (2022) 383–392.  doi: 10.1039/d1mh01081f

    153. [153]

      W. Liu, Y. Zhang, X. Zheng, et al., Energy Fuels 37 (2023) 16097–16104.  doi: 10.1021/acs.energyfuels.3c02570

    154. [154]

      Y. Zhang, Y. Chen, M. Alfred, et al., Compos. Part B Eng. 224 (2021) 109228.

    155. [155]

      Y. Chen, S. He, Q. Rong, Mater. Today Chem. 33 (2023) 101726.

    156. [156]

      P.C. Selvin, P. Perumal, S. Selvasekarapandian, et al., Ionics (Kiel) 24 (2018) 3535–3542.

    157. [157]

      S. Rudhziah, A. Ahmad, I. Ahmad, et al., Electrochim. Acta 175 (2015) 162–168.

    158. [158]

      S. Rudhziah, M.S.A. Rani, A. Ahmad, et al., Ind. Crops Prod. 72 (2015) 133–141.

    159. [159]

      Y. Huang, J. Liu, J. Zhang, et al., RSC Adv. 9 (2019) 16313–16319.  doi: 10.1039/c9ra01120j

    160. [160]

      D. Mudgil, S. Barak, B.S. Khatkar, Int. J. Biol. Macromol. 50 (2012) 1035–1039.

    161. [161]

      S. Kundu, M.F. Abdullah, A. Das, et al., RSC Adv. 6 (2016) 106563–106571.

    162. [162]

      Q. Li, H. Yang, L. Xie, et al., Chem. Commun. 52 (2016) 13479–13482.

    163. [163]

      Y. Huang, J. Zhang, J. Liu, et al., Mater. Today Energy 14 (2019) 100349.

    164. [164]

      S. Ghorai, A. Sarkar, M. Raoufi, et al., ACS Appl. Mater. Interfaces 6 (2014) 4766–4777.  doi: 10.1021/am4055657

    165. [165]

      S. Zhang, N. Yu, S. Zeng, et al., J. Mater. Chem. A 6 (2018) 12237–12243.  doi: 10.1039/c8ta04298e

    166. [166]

      Y. Mao, H. Duan, B. Xu, et al., Energy Environ. Sci. 5 (2012) 7950–7955.  doi: 10.1039/c2ee21817h

    167. [167]

      H. Li, C. Han, Y. Huang, et al., Energy Environ. Sci. 11 (2018) 941–951.  doi: 10.1039/c7ee03232c

    168. [168]

      D. Pelc, S. Marion, M. Požek, et al., Soft Matter 10 (2014) 348–356.

    169. [169]

      F. Wan, L. Zhang, X. Dai, et al., Nat. Commun. 9 (2018) 1656.

    170. [170]

      Q. Han, X. Chi, S. Zhang, et al., J. Mater. Chem. A 6 (2018) 23046–23054.  doi: 10.1039/c8ta08314b

    171. [171]

      W. Yang, W. Yang, J. Zeng, et al., Prog. Mater. Sci. 144 (2024) 101264.

  • 加载中
    1. [1]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    2. [2]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    3. [3]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    4. [4]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    5. [5]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    6. [6]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    7. [7]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    8. [8]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    9. [9]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    10. [10]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    11. [11]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    12. [12]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    13. [13]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    14. [14]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    15. [15]

      Qian WangDong YangWenxing XinYongqi WangWenchang HanWengxiang YanChunman YangFei WangYiyong ZhangZiyi ZhuXue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669

    16. [16]

      Mengxiao YangHaicheng HuangShiyi ShenXinxin LiuMengyu LiuJiahua GuoFenghui YangBaoli ZhaJiansheng WuSheng LiFengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988

    17. [17]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    18. [18]

      Yuhuan MengLong ZhangLequan WangJunming KangHongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025

    19. [19]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    20. [20]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return