Citation: Wenqing Deng, Fanfeng Deng, Ting Zhang, Junjie Lin, Liang Zhao, Gang Li, Yi Pan, Jiebin Yang. Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer[J]. Chinese Chemical Letters, ;2025, 36(3): 110085. doi: 10.1016/j.cclet.2024.110085 shu

Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer

    * Corresponding authors.
    E-mail addresses: 13880777735@163.com (Y. Pan), 626056334@qq.com (J. Yang).
  • Received Date: 12 September 2023
    Revised Date: 12 May 2024
    Accepted Date: 3 June 2024
    Available Online: 4 June 2024

Figures(7)

  • Fuel cell electric vehicles hold great promise for a diverse range of applications in reducing greenhouse gas emissions. In power fuel cell systems, hydrogen fuel serves as an energy vector. To ensure its suitability, it is necessary for the quality of hydrogen to adhere to the standards set by ISO 14687:2019, which sets maximum limits for 14 impurities in hydrogen, aiming to prevent any degradation of fuel cell performance. Ammonia (NH3) is a prominent pollutant in fuel cells, and accurate measurements of its concentration are crucial for hydrogen fuel cell quantity. In this study, a novel detection platform was developed for determining NH3 in real hydrogen samples. The online analysis platform integrates a self-developed online dilution module with a Fourier transform infrared spectrometer (ODM-FTIR). The ODM-FTIR can be operated fully automatically with remote operation. Under the optimum conditions, this method achieved a wide linear range between (50~1000) nmol/mol. The limit of detection (LOD) was as low as 2 nmol/mol with a relative standard deviation (RSD, n = 7) of 3.6% at a content of 50 nmol/mol. To ensure that the quality of the hydrogen products meets the requirement of proton exchange membrane fuel cell vehicles (PEMFCV), the developed ODM-FTIR system was applied to monitor the NH3 content in Chengdu Hydrogen Energy Co., Ltd. for 21 days during Chengdu 2021 FISU World University Games. The proposed method retains several unique advantages, including a low detection limit, excellent repeatability, high accuracy, high speed, good stability, and calibration flexibility. It is an effective analytical method for accurately quantifying NH3 in hydrogen, especially suitable for online analysis. It also provides a new idea for the analysis of other impurity components in hydrogen.
  • 加载中
    1. [1]

      J.H. Wee, Renew. Sust. Energ. Rev. 11 (2007) 1720–1738.  doi: 10.1016/j.rser.2006.01.005

    2. [2]

      K.Y. Shen, S. Park, Y.B. Kim, Int. J. Hydrogen. Energy 45 (2020) 16773–16786.  doi: 10.1016/j.ijhydene.2020.04.147

    3. [3]

      X. Cheng, Z. Shi, N. Glass, et al., J. Power. Source 165 (2007) 739–756.  doi: 10.1016/j.jpowsour.2006.12.012

    4. [4]

      B. Shabani, M. Hafttananian, S. Khamani, A. Ramiar, A.A. Ranjbar, J. Power. Source 427 (2019) 21–48.  doi: 10.1016/j.jpowsour.2019.03.097

    5. [5]

      W.M. Yan, H.S. Chu, Y.L. Liu, F. Chen, J.H. Jang, Int. J. Hydrogen. Energy 36 (2011) 5435–5441.  doi: 10.1016/j.ijhydene.2011.01.158

    6. [6]

      K. Narusawa, M. Hayashida, Y. Kamiya, et al., JSAE Rev. 24 (2003) 41–46.  doi: 10.1016/S0389-4304(02)00239-4

    7. [7]

      X.Y. Zhang, H.M. Galindo, H.F. Garces, et al., J. Electrochem. Soc. 157 (2010) B409–B414.  doi: 10.1149/1.3284646

    8. [8]

      H. Li, H.J. Wang, W.M. Qian, et al., J. Power Sources 196 (2011) 6249–6255.  doi: 10.1016/j.jpowsour.2011.04.018

    9. [9]

      X.Z. Yuan, H. Li, Y. Yi, et al., Int. J. Hydrogen. Energy 37 (2012) 12464–12473.  doi: 10.1016/j.ijhydene.2012.05.125

    10. [10]

      International Standard., Hydrogen fuel quality-product specification, ISO 14687, 2019.

    11. [11]

      International Standard., Hydrogen fuel-product specification and quality assurance-Proton exchange membrane (PEM) fuel cell applications for road vehicles, EN 17124, 2018.

    12. [12]

      International Standard., Hydrogen Fuel Quality for Fuel Cell Vehicles, SAE J2719, 2020.

    13. [13]

      H. Meuzelaar, J. Liu, S. Persijn, J.V. Wijk, A.M.H.V.D. Veen, Int. J. Hydrogen. Energy 45 (2020) 34024–34036.  doi: 10.1016/j.ijhydene.2020.09.046

    14. [14]

      Y. Pan, F.F. Deng, Z. Fang, et al., Chin. Chem. Lett. 32 (2021) 3440–3445.  doi: 10.1016/j.cclet.2021.05.067

    15. [15]

      S.W. Kim, B.A. Trisna, M. Yin, et al., Int. J. Hydrogen. Energy 48 (2023) 13012–13023.  doi: 10.1016/j.ijhydene.2022.12.233

    16. [16]

      P.Y. Wang, W.G. Chen, J.X. Wang, et al., Anal. Chem. 95 (2023) 6894–6904.  doi: 10.1021/acs.analchem.3c00066

    17. [17]

      Z. Noda, K. Hirata, A. Hayashi, et al., Int. J. Hydrogen. Energy 42 (2017) 3281–3293.  doi: 10.1016/j.ijhydene.2016.12.066

    18. [18]

      R. Mukundan, E.L. Brosha, C.J. Romero, D. Poppe, T. Rockward, J. Electrochem. Soc. 167 (2020) 147507.  doi: 10.1149/1945-7111/abc43a

    19. [19]

      K. Arrhenius, O. Büker, A. Fischer, S. Persijn, N.D. Moore, Meas. Sci. Technol. 31 (2020) 075010.  doi: 10.1088/1361-6501/ab7cf3

    20. [20]

      C. Beurey, B. Gozlan, M. Carré, et al., Front. Energy Res. 8 (2020) 615149.

    21. [21]

      B. Urasinska-Wojcik, J.W. Gardner, IEEE Sens. Lett. 2 (2017) 1–4.

    22. [22]

      D.Z. Zhang, S.J. Yu, X.W. Wang, et al., J. Hazard. Mater. 423 (2022) 127160.  doi: 10.1016/j.jhazmat.2021.127160

    23. [23]

      Z.W. Qiu, Y.T. Xue, J.R. Li, et al., Chin. Chem. Lett. 32 (2021) 2807–2811.  doi: 10.1016/j.cclet.2021.02.029

    24. [24]

      N. Rajalakshmi, T.T. Jayanth, K.S. Dhathathreyan, Fuel Cells 3 (2003) 177–180.  doi: 10.1002/fuce.200330107

    25. [25]

      F.A. Uribe, S. Gottesfeld, T.A. Zawodzinski, J. Electrochem. Soc. 149 (2002) A293–A296.  doi: 10.1149/1.1447221

    26. [26]

      F.A. Uribe, T. Zawodzinski, S. Gottesfeld, ECS. PVS. 27 (1998) 229–237.  doi: 10.1149/199827.0229pv

    27. [27]

      R. Halseid, P.J.S. Vie, R. Tunold, J. Power Sources 154 (2006) 343–350.  doi: 10.1016/j.jpowsour.2005.10.011

    28. [28]

      A.S. Brown, G.M. Vargha, M.L. Downey, et al., NPL Report AS 64, National Physical Laboratory, Teddington, UK, 2011. Available at https://eprintspublications.npl.co.uk/5212/.

    29. [29]

      International Standard., Standard Test Method for Determination of Ammonium, Alkali and Alkaline Earth Metals in Hydrogen and Other Cell Feed Gases by Ion Chromatography, ASTM D7550, 2009.

    30. [30]

      International Standard., Standard Test Method for Hydrogen Purity Analysis Using a Continuous Wave Cavity Ring-Down Spectroscopy Analyzer, ASTM D7941/D7941M, 2023.

    31. [31]

      International Standard., Standard Test Method for Determination of Trace Gaseous Contaminants In Hydrogen Fuel by Fourier Transform Infrared (FTIR) Spectroscopy, ASTM D7653, 2018.

    32. [32]

      National standard., Fuel specification for proton exchange membrane fuel cell vehicles—Hydrogen, GB/T 37244, 2018.

    33. [33]

      National standard., Air Quality—Determination of Ammonia—Ion Selective Electrode Method, GB/T 14669, 1993.

    34. [34]

      A.A. Stec, P. Fardell, P. Blomqvist, et al., Fire. Saf. J. 46 (2011) 225–233.  doi: 10.1016/j.firesaf.2011.02.004

    35. [35]

      F. Hase, M. Frey, T. Blumenstock, et al., Atmos. Meas. Tech. 8 (2015) 3059–3068.  doi: 10.5194/amt-8-3059-2015

    36. [36]

      J. Mohn, M.J. Zeeman, R.A. Werner, W. Eugster, L. Emmenegger, Isot. Environ. Health Stud. 44 (2008) 241–251.  doi: 10.1080/10256010802309731

    37. [37]

      S. Yamanouchi, K. Strong, O. Colebatch, et al., Environ. Res. Commun. 3 (2021) 051002.  doi: 10.1088/2515-7620/abfa65

    38. [38]

      International Standard;, Gas Analysis-Preparation of Calibration Gas Mixtures–Part 1: Gravimetric Method For Class I Mixtures, ISO 6142-1, 2015.

    39. [39]

      Y. Pan, Y.J. Zhang, Z.A. Li, et al., Microchem. J. 156 (2020) 104833.  doi: 10.1016/j.microc.2020.104833

    40. [40]

      International Standard, Gas Analysis-Analytical Methods For Hydrogen Fuel-Proton Exchange Membrane (PEM) Fuel Cell Applications For Road Vehicles, ISO 21087, 2019.

    41. [41]

      K. Arrhenius, A. Anna, H. Yaghooby, et al., Analysis of Hydrogen Quality According to Standard ISO/DIS 14687-2 Pre-Study, Energiforsk, Stockholm, Sweden, 2015, p. 177. Report 2015 Available at https://energiforskmedia.blob.core.windows.net/media/18581/analysis-of-hydrogen-quality-energiforskrapport-2015-177.pdf.

    42. [42]

      T. Bacquart, K. Arrhenius, S. Persijn, et al., J. Power Sources 444 (2019) 227170.  doi: 10.1016/j.jpowsour.2019.227170

    43. [43]

      L. Dong, J. Wright, B. Peters, et al., Appl. Phys B 107 (2012) 459–467.

  • 加载中
    1. [1]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    2. [2]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    3. [3]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    4. [4]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    5. [5]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    6. [6]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    7. [7]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    8. [8]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    9. [9]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    10. [10]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    11. [11]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    12. [12]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    13. [13]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    14. [14]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    15. [15]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    18. [18]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    19. [19]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    20. [20]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

Metrics
  • PDF Downloads(2)
  • Abstract views(128)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return