Application of magnetic nanomaterials in peptidomics: A review in the past decade
-
* Corresponding authors.
E-mail addresses: dingchuanfan@nbu.edu.cn (C.-F. Ding), yanyinghua@nbu.edu.cn (Y. Yan).
Citation:
Yimin Guo, Yiting Luo, Shuwen Hua, Chuan-Fan Ding, Yinghua Yan. Application of magnetic nanomaterials in peptidomics: A review in the past decade[J]. Chinese Chemical Letters,
;2025, 36(6): 110070.
doi:
10.1016/j.cclet.2024.110070
Y.L. Li, N.R. Sun, X.F. Hu, Y. Li, C.H. Deng, TrAC Trends Anal. Chem. 120 (2019) 115658.
doi: 10.1016/j.trac.2019.115658
Y.J. Chen, H.L. Chen, C.J. Yang, et al., Chin. Chem. Lett. 34 (2023) 107352.
doi: 10.1016/j.cclet.2022.03.075
B.C. Wang, Z.H. Xie, C.F. Ding, C.H. Deng, Y.H. Yan, TrAC Trends Anal. Chem. 158 (2023) 116881.
doi: 10.1016/j.trac.2022.116881
S.W. Hua, B. Wang, C.F. Ding, Y.H. Yan, Talanta 266 (2023) 125139.
Y.F. Lin, C.R. Du, H.M. Ying, et al., Anal. Chim. Acta 1287 (2024) 342058.
doi: 10.1016/j.aca.2023.342058
S. Zhao, W.Y. Hu, D.T. Zhang, X.Y. Wang, G.S. Guo, Microchem. J. 195 (2023) 109423.
doi: 10.1016/j.microc.2023.109423
A.K. Swaroop, P.K.K. Namboori, M. Esakkimuthukumar, et al., Comput. Biol. Med. 163 (2023) 107231.
doi: 10.1016/j.compbiomed.2023.107231
B. Wang, X.Y. Zhang, S.W. Hua, C.F. Ding, Y.H. Yan, Microchim. Acta 191 (2024) 26.
doi: 10.1117/12.3021303
L.C. Chan, C.W. Li, W.Y. Xia, et al., J. Clin. Invest. 129 (2019) 3324–3338.
doi: 10.1172/jci126022
E. Valdes-Marquez, R. Clarke, M. Hill, H. Watkins, J.C. Hopewell, Eur. J. Prev. Cardiol. 30 (2023) 583–591.
doi: 10.1093/eurjpc/zwad020
J.K. Chen, B. Wang, Y.T. Luo, et al., Talanta 264 (2023) 124771.
doi: 10.1016/j.talanta.2023.124771
N.R. Sun, H. Wu, X.Z. Shen, C.H. Deng, Adv. Funct. Mater. 29 (2019) 1900253.
doi: 10.1002/adfm.201900253
L.L. Kong, F.Z. Li, W. Fang, et al., Anal. Chem. 95 (2023) 11326–11334.
doi: 10.1021/acs.analchem.3c01392
N.R. Sun, H.L. Yu, H. Wu, X.Z. Shen, C.H. Deng, TrAC Trends Anal. Chem. 135 (2021) 116168.
doi: 10.1016/j.trac.2020.116168
Y.J. Chen, T.C. Yen, Y.H. Lin, et al., Anal. Chem. 93 (2021) 15931–15940.
doi: 10.1021/acs.analchem.1c03224
L.P. Liu, S.X. Jin, P.C. Mei, P. Zhou, Talanta 203 (2019) 58–64.
doi: 10.1016/j.talanta.2019.05.050
Z.X. Li, Q. Wang, J.W. Mao, et al., Anal. Chim. Acta 1142 (2021) 48–55.
doi: 10.1016/j.aca.2020.10.042
A. Goumenou, N. Delaunay, V. Pichon, Front. Mol. Biosci. 8 (2021) 746822.
doi: 10.3389/fmolb.2021.746822
D.Q. Wang, J.F. Huang, L.J. Li, ACS Appl. Mater. Interfaces 15 (2023) 47893–47901.
doi: 10.1021/acsami.3c08697
X.Y. Zhou, H.Y. Zhang, L. Wang, L.T. Lv, R.A. Wu, Analyst. 148 (2023) 1483–1491.
doi: 10.1039/d2an02004a
D.D. Jiang, X.Q. Li, J.T. Ma, Q. Ji, Talanta 180 (2018) 368–375.
doi: 10.1016/j.talanta.2017.12.048
J. Li, J.H. Huang, Y.J. Jiang, L.M. Wu, Y.H. Deng, Adv. Funct. Mater. 33 (2023) 2212317.
doi: 10.1002/adfm.202212317
Q. Yue, J.G. Sun, Y.J. Kang, Y.H. Deng, Angew. Chem. Int. Ed. 59 (2020) 15804–15817.
doi: 10.1002/anie.201911690
C.Y. Yuan, X.Q. Wang, X.Y. Yang, et al., Chin. Chem. Lett. 32 (2021) 2079–2085.
doi: 10.1016/j.cclet.2020.11.027
Y. Zhang, Q. Yue, M.M. Zagho, et al., ACS Appl. Mater. Interfaces 11 (2019) 10356–10363.
doi: 10.1021/acsami.8b18721
Y.M. Guo, S.W. Hua, B.C. Wang, et al., Analyst 148 (2023) 5864–5872.
doi: 10.1039/d3an01473h
Y.T. Luo, B.C. Wang, L.H. Yi, et al., TrAC Trends Anal. Chem. 167 (2023) 117234.
doi: 10.1016/j.trac.2023.117234
H.W. Zheng, H. Lin, X.F. Chen, et al., TrAC Trends Anal. Chem. 129 (2020) 115952.
doi: 10.1016/j.trac.2020.115952
H. Qi, L.Y. Jiang, Q. Jia, Chin. Chem. Lett. 32 (2021) 2629–2636.
doi: 10.1016/j.cclet.2021.01.037
Y.A. Chang, D. Zhu, W.J. Duan, et al., Int. J. Biol. Macromol. 193 (2021) 1541–1550.
doi: 10.1016/j.ijbiomac.2021.10.217
X.Y. Feng, C.H. Deng, M.X. Gao, X.M. Zhang, Anal. Bioanal. Chem. 410 (2018) 989–998.
doi: 10.1007/s00216-017-0602-5
J. Wei, Y. Ren, W. Luo, et al., Chem. Mater. 29 (2017) 2211–2217.
doi: 10.1021/acs.chemmater.6b05032
Z.X. Xu, H.L. Chen, H.M. Chu, et al., Chin. Chem. Lett. 34 (2023) 107829.
doi: 10.1016/j.cclet.2022.107829
W.D. Ma, C. Zhong, J. Lin, et al., Chin. Chem. Lett. 33 (2022) 5174–5179.
doi: 10.1016/j.cclet.2022.01.047
H.M. Chen, Y.L. Li, H. Wu, N.R. Sun, C.H. Deng, ACS Sustain. Chem. Eng. 7 (2019) 2844–2851.
doi: 10.1021/acssuschemeng.8b06258
Z.X. Xu, Y.L. Wu, Z.Q. Deng, et al., Talanta 234 (2021) 122713.
doi: 10.1016/j.talanta.2021.122713
H. Qi, Z. Li, H.J. Zheng, L. Fu, Q. Ji, Chin. Chem. Lett. 30 (2019) 2181–2185.
doi: 10.1016/j.cclet.2019.06.046
P. Su, M. Li, X. Li, et al., J. Chromatogr. A 1667 (2022) 462869.
doi: 10.1016/j.chroma.2022.462869
W.W. Huan, J.S. Zhang, H. Qin, et al., Nanoscale 11 (2019) 10952–10960.
doi: 10.1039/c9nr01441a
N. Zhang, X.F. Hu, H.L. Chen, C.H. Deng, N.R. Sun, Chem. Commun. 57 (2021) 6249–6252.
doi: 10.1039/d1cc01530c
L.H. Yi, Y.F. Shao, M.Y. Fu, et al., J. Chromatogr. A 1669 (2022) 462929.
doi: 10.1016/j.chroma.2022.462929
B.F. Zhao, W.H. Xu, J.T. Ma, Q. Jia, Chin. Chem. Lett. 34 (2023) 107498.
doi: 10.1016/j.cclet.2022.05.012
J.Y. Lu, J.Y. Luan, Y.J. Li, et al., J. Chromatogr. A 1615 (2020) 460754.
doi: 10.1016/j.chroma.2019.460754
X.W. Li, H.Y. Zhang, N. Zhang, et al., ACS Sustain. Chem. Eng. 7 (2019) 11511–11520.
doi: 10.1021/acssuschemeng.9b01382
L. Ma, C.R. Su, X.Y. Li, et al., Food Hydrocoll 148 (2024) 109410.
doi: 10.1016/j.foodhyd.2023.109410
B. Wang, X.Y. Zhang, B.C. Wang, et al., Microchim. Acta 190 (2023) 399.
doi: 10.1007/s00604-023-05952-3
N. Li, T.C. Zhang, W.H. Xue, et al., Sep. Purif. Technol. 330 (2024) 125206.
doi: 10.1016/j.seppur.2023.125206
C.F. Bi, Y.L. Liang, L.J. Shen, et al., ACS Omega 3 (2018) 1572–1580.
doi: 10.1021/acsomega.7b01788
L. Zhang, X.F. Yue, N. Li, et al., Anal. Chim. Acta 1088 (2019) 63–71.
doi: 10.1016/j.aca.2019.08.040
Y.L. Li, J.W. Wang, N.R. Sun, C.H. Deng, Anal. Chem. 89 (2017) 11151–11158.
doi: 10.1021/acs.analchem.7b03708
X.F. Hu, Y.L. Wu, C.H. Deng, Microchim. Acta 187 (2020) 616.
doi: 10.1007/s00604-020-04595-y
N.R. Sun, H. Wu, H.M. Chen, X.Z. Shen, C.H. Deng, Chem. Commun. 55 (2019) 10359–10375.
doi: 10.1039/c9cc04124a
Z.Z. Lai, M. Zhang, J.Y. Zhou, et al., Analyst 146 (2021) 4261–4267.
doi: 10.1039/d1an00580d
Y.J. Chen, Z.C. Xiong, L.Y. Zhang, et al., Nanoscale 7 (2015) 3100–3108.
doi: 10.1039/C4NR05955G
B. Jiang, Q. Wu, N. Deng, et al., Nanoscale 8 (2016) 4894–4897.
doi: 10.1039/C5NR08126B
J.W. Wang, J.Z. Yao, N.R. Sun, C.H. Deng, J. Chromatogr. A 1512 (2017) 1–8.
doi: 10.1016/j.chroma.2017.07.020
Q.J. Liu, N.R. Sun, C.H. Deng, TrAC Trends Anal. Chem. 110 (2019) 66–80.
doi: 10.1016/j.trac.2018.10.033
C. Liu, J. Wang, J.J. Wan, C.Z. Yu, Coord. Chem. Rev. 432 (2021) 213743.
doi: 10.1016/j.ccr.2020.213743
M.H. Wang, M.Y. Hu, Z.Z. Li, et al., Biosens. Bioelectron. 142 (2019) 111536.
doi: 10.1016/j.bios.2019.111536
C.X. Zhang, C.F. Xie, Y.Y. Gao, et al., Angew. Chem. 61 (2022) e202204108.
doi: 10.1002/anie.202204108
C.J. Hu, J.B. Chen, H.Q. Zhang, et al., Microchem. J. 180 (2022) 107595.
doi: 10.1016/j.microc.2022.107595
Y.Q. Xie, C.H. Deng, Y. Li, J. Chromatogr. A 1508 (2017) 1–6.
doi: 10.1016/j.chroma.2017.05.055
J.X. Wang, X.M. Wang, J. Li, et al., J. Mater. Chem. B 10 (2022) 2011–2018.
doi: 10.1039/d1tb02827h
Q.Y. Gu, H.L. Zhao, T.Y. Zhu, et al., Talanta 267 (2023) 125165.
X.J. Ma, T.F. Scott, Commun. Chem. 1 (2018) 98.
doi: 10.1038/s42004-018-0098-8
H.P. Wang, F.L. Jiao, F.Y. Gao, et al., J. Mater. Chem. B 5 (2017) 4052–4059.
doi: 10.1039/C7TB00700K
Y. Zhang, M. Yu, C. Zhang, et al., Chem. Commun. 51 (2015) 5982–5985.
doi: 10.1039/C4CC10285A
Q.Q. Zhang, Y.Y. Huang, B.Y. Jiang, et al., Anal. Chem. 50 (2018) 7357–7363.
doi: 10.1021/acs.analchem.8b00708
J. Su, X.W. He, L.X. Chen, Y.K. Zhang, Talanta 180 (2018) 54–60.
doi: 10.1016/j.talanta.2017.12.037
X.T. Xue, R. Lu, M. Liu, et al., Analyst 144 (2019) 641–648.
doi: 10.1039/c8an01704b
S.T. Li, Y.R. Qin, G.Q. Zhong, et al., ACS Appl. Mater. Interfaces 10 (2018) 27612–27620.
doi: 10.1021/acsami.8b07671
J.Y. Luan, X.K. Zhu, L.C. Yu, et al., Talanta 251 (2023) 123772.
doi: 10.1016/j.talanta.2022.123772
Z.Y. Guo, Y. Sun, L.R. Zhang, et al., J. Colloid Interface Sci. 615 (2022) 597–605.
doi: 10.1016/j.jcis.2022.02.019
X.Y. Sun, R.T. Ma, J. Chen, Y.P. Shi, Microchim. Acta 185 (2018) 12.
doi: 10.1007/s00604-017-2540-5
J.J. Shu, W.L. Xiong, R. Zhang, et al., Talanta 253 (2022) 123956.
Y. Chen, H.Q. Qin, X.Y. Yue, et al., Anal. Chem. 93 (2021) 16618–16627.
doi: 10.1021/acs.analchem.1c04031
Q.C. Cao, C. Ma, H.H. Bai, et al., Analyst 139 (2014) 603–609.
doi: 10.1039/C3AN01532G
L.T. Liu, M. Yu, Y. Zhang, C.C. Wang, H.J. Lu, ACS Appl. Mater. Interfaces 6 (2014) 7823–7832.
doi: 10.1021/am501110e
B. Jiang, Q. Wu, L.H. Zhang, Y.K. Zhang, Nanoscale 9 (2017) 1607–1615.
doi: 10.1039/C6NR09260H
J.X. Peng, H. Niu, H.Y. Zhang, et al., ACS Appl. Mater. Interfaces 15 (2018) 32613–32621.
doi: 10.1021/acsami.8b11138
C.M. Potel, M.H. Lin, A.J.R. Heck, S. Lemeer, Mol. Cell. Proteomics 17 (2018) 1028–1034.
doi: 10.1074/mcp.TIR117.000518
Q. Wang, X.M. He, X. Chen, et al., J. Chromatogr. A 1499 (2017) 30–37.
doi: 10.1016/j.chroma.2017.03.085
M.M. Zhang, H. Wang, R. Bhandari, Q.H. Pan, F.Y. Sun, Anal. Bioanal. Chem. 413 (2021) 2893–2901.
doi: 10.1007/s00216-021-03215-9
Q.J. Liu, N.R. Sun, M.X. Gao, C.H. Deng, ACS Sustain. Chem. Eng. 6 (2018) 4382–4389.
doi: 10.1021/acssuschemeng.8b00023
H.M. Chu, H.Y. Zheng, A.Z. Miao, C.H. Deng, N.R. Sun, Chin. Chem. Lett. 34 (2023) 107716.
doi: 10.1016/j.cclet.2022.07.059
W.K. Zhu, D.T. Yang, A.M. Gronenborn, J. Am. Chem. Soc. 145 (2023) 4564–4569.
doi: 10.1021/jacs.2c12021
K.N. Zhang, Y. Hao, D.H. Hu, et al., J. Chromatogr. A 1659 (2021) 462648.
doi: 10.1016/j.chroma.2021.462648
C.H. Zhang, Y.N. Pan, Y.M. Zhao, et al., Anal. Chim. Acta 1186 (2021) 339099.
doi: 10.1016/j.aca.2021.339099
B. Liu, B.C. Wang, Y.H. Yan, K.Q. Tang, C.F. Ding, Microchim. Acta 188 (2021) 32.
doi: 10.1080/23818107.2020.1756908
Z.X. Xu, Y.L. Wu, H. Wu, N.R. Sun, C.H. Deng, Anal. Chim. Acta 1146 (2021) 53–60.
doi: 10.1109/icpee54380.2021.9662541
X.N. Sun, X.D. Liu, J.A. Feng, et al., Anal. Chim. Acta 880 (2015) 67–76.
doi: 10.1016/j.aca.2015.04.029
J.B. Jiang, X.N. Sun, X.J. She, et al., Microchim. Acta 185 (2018) 309.
doi: 10.4103/1673-5374.226401
H.Z. Lin, C.H. Deng, Talanta 149 (2016) 91–97.
doi: 10.1016/j.talanta.2015.11.037
J.B. Jiang, X.N. Sun, Y. Li, C.H. Deng, G.L. Duan, Talanta 178 (2018) 600–607.
doi: 10.1016/j.talanta.2017.09.071
J.S. Harrington, S.W. Ryter, M. Plataki, D.R. Price, A.M.K. Choi, Physiol. Rev. 103 (2023) 2349–2422.
doi: 10.1152/physrev.00058.2021
L.Y. Zhang, Q. Zhao, Z. Liang, et al., Chem. Commun. 48 (2012) 6274–6276.
doi: 10.1039/c2cc31641b
L.Y. Zhang, Z. Liang, L.H. Zhang, Y.K. Zhang, S.J. Shao, Anal. Chim. Acta 900 (2015) 46–55.
doi: 10.1016/j.aca.2015.10.012
J. Su, X.W. He, L.X. Chen, Y.K. Zhang, ACS Sustain. Chem. Eng. 6 (2018) 2188–2196.
doi: 10.1021/acssuschemeng.7b03607
X.S. Li, L.D. Xu, G.T. Zhu, B.F. Yuan, Y.Q. Feng, Analyst 137 (2012) 959–967.
doi: 10.1039/C2AN15985F
Q.W. Yu, X.S. Li, Y.S. Xiao, et al., J. Chromatogr. A 1365 (2014) 54–60.
doi: 10.1016/j.chroma.2014.09.008
D.D. Jiang, S. Lv, X. Han, et al., Microchim. Acta 188 (2021) 327.
doi: 10.1007/s00604-021-04972-1
Y.T. He, S.S. Zhang, C. Zhong, et al., Talanta 235 (2021) 122789.
doi: 10.1016/j.talanta.2021.122789
J.Z. He, J.J. Li, J.L. Zhang, et al., Carbon N Y 214 (2023) 118266.
doi: 10.1016/j.carbon.2023.118266
N.K. Chen, Y.Y. Xiao, C. Wang, J.H. He, N.N. Song, ACS Appl. Mater. Interfaces 15 (2023) 48529–48542.
doi: 10.1021/acsami.3c10316
Y. Wang, Y.Y. Wei, P.C. Gao, et al., ACS Appl. Mater. Interfaces 13 (2021) 11166–11176.
doi: 10.1021/acsami.0c19734
R.F. Gao, J. Li, R. Shi, et al., J. Mater. Sci. Technol. 59 (2020) 234–242.
doi: 10.1016/j.jmst.2020.02.091
X.Q. Chen, S.Y. Li, X.X. Zhang, Q.H. Min, J.J. Zhu, Nanoscale 7 (2015) 5815–5825.
doi: 10.1039/C4NR07041K
Q.H. Min, S.Y. Li, X.Q. Chen, et al., ACS Appl. Mater. Interfaces 7 (2015) 9563–9572.
doi: 10.1021/acsami.5b01006
D.S. Roberts, B.F. Chen, T.N. Tiambeng, et al., Nano Res. 12 (2019) 1473–1481.
doi: 10.1007/s12274-019-2418-4
X.Y. Long, J.Y. Li, D. Sheng, H.Z. Lian, Talanta 166 (2017) 36–45.
doi: 10.1016/j.talanta.2017.01.025
H.L. Chen, Y. Qi, C.Y. Yang, et al., ACS Nano 17 (2023) 23924–23935.
doi: 10.1021/acsnano.3c08391
J.Y. Li, X.Y. Long, D. Sheng, H.Z. Lian, Talanta 208 (2020) 120437.
doi: 10.1016/j.talanta.2019.120437
M.Y. Wang, C.H. Deng, Y. Li, X.M. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 11775–11782.
doi: 10.1021/am502530c
D.D. Jiang, S.Q. Lv, R.X. Qi, J.H. Liu, L.M. Duan, J. Chromatogr. A 1678 (2022) 463374.
doi: 10.1016/j.chroma.2022.463374
Y.Y. Hong, Q.L. Zhan, C.L. Pu, et al., Talanta 187 (2018) 223–230.
doi: 10.1016/j.talanta.2018.05.031
Y.Y. Hong, C.L. Pu, H.L. Zhao, et al., Nanoscale 9 (2017) 16764–16772.
doi: 10.1039/C7NR05330D
Y.L. Li, L.L. Liu, H. Wu, C.H. Deng, Anal. Chim. Acta 1079 (2019) 111–119.
doi: 10.1504/ijbic.2019.10019880
A. Ostovan, M. Arabi, Y.Q. Wang, et al., Adv. Mater. 34 (2022) 2203154.
doi: 10.1002/adma.202203154
X.W. Fang, Z.D. Wang, N.R. Sun, C.H. Deng, Talanta 223 (2021) 122143.
Y. Chen, D.J. Li, Z.J. Bie, X.P. He, Z. Liu, Anal. Chem. 88 (2016) 1447–1454.
doi: 10.1021/acs.analchem.5b04343
X.W. Fang, Z.D. Wang, N.R. Sun, C.H. Deng, Talanta 226 (2021) 122143.
doi: 10.1016/j.talanta.2021.122143
Q.S. Liu, K.N. Zhang, Y.H. Jin, et al., Talanta 186 (2018) 346–353.
doi: 10.1016/j.talanta.2018.04.025
N. Zhang, N.R. Sun, C.H. Deng, Chem. Commun. 56 (2020) 13999–14002.
doi: 10.1039/d0cc06147f
R.L. Xiao, Y.N. Pan, J. Li, L.Y. Zhang, W.B. Zhang, J. Chromatogr. A 1601 (2019) 45–52.
doi: 10.1016/j.chroma.2019.05.010
S. Yan, B. Luo, J. Cheng, et al., J. Mater. Chem. B 10 (2022) 9671–9681.
doi: 10.1039/d2tb00970f
N. Zhang, T. Huang, P.S. Xie, et al., ACS Appl. Mater. Interfaces 14 (2022) 39364–39374.
doi: 10.1021/acsami.2c10353
S. Yan, B. Luo, J. He, F. Lan, Y. Wu, J. Mater. Chem. B 9 (2021) 1811–1820.
doi: 10.1039/d0tb02517h
H. Qi, G. Chen, Q. Jia, Talanta 247 (2022) 123563.
doi: 10.1016/j.talanta.2022.123563
J.X. Peng, H.Y. Zhang, X. Li, et al., ACS Appl. Mater. Interfaces 8 (2016) 35012–35020.
doi: 10.1021/acsami.6b12630
J.Q. Zhou, Y.L. Liang, X.W. He, L.X. Chen, Y.K. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 11413–11421.
doi: 10.1021/acssuschemeng.7b02521
W. Gao, F. Zhang, S. Zhang, J.Y. Li, H.Z. Lian, Sep. Purif. Technol. 305 (2023) 122426.
doi: 10.1016/j.seppur.2022.122426
D.S. Yang, X.Y. Ding, H.P. Min, et al., J. Chromatogr. A 1505 (2017) 56–62.
doi: 10.1016/j.chroma.2017.05.025
J.W. Wang, Z.D. Wang, N.R. Sun, C.H. Deng, Microchim. Acta 186 (2019) 236.
doi: 10.1007/s00604-019-3346-4
B. Luo, X.X. Zhou, P.P. Jiang, et al., J. Mater. Chem. B 6 (2018) 3969–3978.
doi: 10.1039/c8tb00705e
D.D. Jiang, L.M. Duan, Q. Jia, J.H. Liu, Anal. Chim. Acta 1136 (2020) 25–33.
doi: 10.1016/j.aca.2020.07.057
H. Qi, Z. Li, H.J. Zheng, Q. Jia, Anal. Chim. Acta 1157 (2021) 338383.
doi: 10.1016/j.aca.2021.338383
L.Z. Yu, J. He, S. Yan, et al., ACS Sustainable Chem. Eng. 10 (2022) 2494–2508.
doi: 10.1021/acssuschemeng.1c07715
D.P. Xu, M.X. Gao, C.H. Deng, X.M. Zhang, Anal. Bioanal. Chem. 408 (2016) 5489–5497.
doi: 10.1007/s00216-016-9647-0
D.P. Xu, G.Q. Yan, M.X. Gao, C.H. Deng, X.M. Zhang, Talanta 166 (2017) 154–161.
doi: 10.1016/j.talanta.2017.01.030
Z.D. Wang, J.W. Wang, N.R. Sun, C.H. Deng, Anal. Chim. Acta 1067 (2019) 1–10.
doi: 10.1016/j.aca.2019.04.010
Y.Y. Hong, H. Zhao, C.L. Pu, et al., Anal. Chem. 90 (2018) 11008–11015.
doi: 10.1021/acs.analchem.8b02614
N.R. Sun, J.W. Wang, J.Z. Yao, H.M. Chen, C.H. Deng, Microchim. Acta 186 (2019) 159.
doi: 10.1007/s00604-019-3274-3
N.R. Sun, H. Wu, X.Z. Shen, Microchim. Acta 187 (2020) 3.
doi: 10.1007/978-3-030-65745-1_1
Z.X. Xu, Y.L. Wu, X.F. Hu, C.H. Deng, N.R. Sun, Chinese Chem. Lett. 33 (2022) 4695–4699.
doi: 10.1016/j.cclet.2021.12.069
Y.L. Wu, Q.J. Liu, C.H. Deng, Anal. Chim. Acta 1061 (2019) 110–121.
doi: 10.1016/j.aca.2019.01.052
Y.L. Wu, Q.J. Liu, Y.Q. Xie, C.H. Deng, Talanta 190 (2018) 298–312.
doi: 10.1016/j.talanta.2018.08.010
Y.N. Pan, C.H. Zhang, R.L. Xiao, L.Y. Zhang, W.B. Zhang, Anal. Chim. Acta 1158 (2021) 338412.
doi: 10.1016/j.aca.2021.338412
H. Qi, Z. Li, J.T. Ma, Q. Jia, J. Mater. Chem. B 10 (2022) 3560–3566.
doi: 10.1039/d2tb00057a
F.F. Xiong, T. Zhang, J.T. Ma, Q. Jia, Talanta 266 (2024) 125068.
doi: 10.1016/j.talanta.2023.125068
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
Yang Feng , Yang-Qing Tian , Yong-Qiang Zhao , Sheng-Jun Chen , Bi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656
Dake Liu , Shuyan Liu , Fanlei Hu , Zhongtang Li , Zhongjun Li . N-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Wen Su , Siying Liu , Qingfu Zhang , Zhongyan Zhou , Na Wang , Lei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Lijia Xu , Tong Zhong , Wei Zhao , Bing Yao , Lin Ding , Huangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281